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This document provides an overview of preprocessing techniques for EEG signals. It is
part of Deliverable D2.2 of the COCOHA project, funded by the H2020 ICT programme of
the European Union under grant number 644732. COCOHA aims to help hearing impaired
persons so that they can deal with challenging noisy environments, by providing them with
the means to steer sophisticated acoustic processing (such as microphone arrays) with control

signals derived directly from the brain. This document is available at

https://cocoha.org/cocoha-reports/. See also the COCOHA report on Alternative Technologies

for Brain Signal Sensing.

Executive summary

1. Preprocessing aims to improve the quality of EEG signals so that decoding
algorithms can extract reliable control signals.
2. Raw EEG signals are contaminated by multiple artifacts from environmental

noise sources (e.g. electromagnetic interference), the electrode-skin interface,

muscular or ocular activity, and irrelevant brain activity.

3. Abasic distinction can be made between channel-specific noise due for example
to the electrode-skin interface or local muscle activity, and channel-shared noise,
for example from irrelevant brain sources. Spatial filtering is more useful for the

latter than the former.

4. Four strategies are available: (a) reduce noise at the source, (b) process signals to
improve their quality, (c) design robust decoding algorithms, (d) train subjects to

optimize their cortical signals. This document focuses on (b).
5. A wide panoply of methods is available from the literature, and new methods
have developed within the COCOHA project.
6. EEG signals are typically measured on multiple channels, yielding

multidimensional data to which linear methods such as spatial filtering can be

applied (e.g. ICA or beamforming).
7. Dimensionality of the data is a critical factor. Artifacts are more likely to be

separable within high-dimensional data (many channels) but this advantage may

be mitigated by overfitting and noise.

8. The COCOHA project has developed several new methods. Of particular interest
are methods that exploit the nonstationarity of the noise correlation structure.

Several have been published, others are under development.
9. Preprocessing is crucial to the success of the COCOHA project.






1. The COCOHA context

The COCOHA project (http://cocoha.org/) funded by the EU H2020 initiative aims at
developing a "smart" hearing aid in which acoustic processing is under the control of
signals from the brain recorded by electroencephalography (EEG) or other means. With
such a device a hearing impaired listener could focus attention on a particular sound
source (for example a person speaking), and isolate it from noise and competing sources
with the assistance of sophisticated acoustic processing (e.g. microphone arrays). Our
intact auditory is quite adept at performing such a task, usually without our noticing, but
this ability is reduced by impairment. The COCOHA project aims to restore this ability by
artificial means.

A major impediment is that EEG signals are usually very noisy and contaminated by
various artifacts that mask the desired cortical signals. These may be removed either by
preprocessing the EEG signals before extracting the control signals, or else by designing
the control signal extraction algorithms such that they are insensitive to the presence of
artifacts. The distinction between the two approaches is to some extent arbitrary, and
here we adopt the viewpoint of preprocessing. Our focus is the COCOHA task, but much
of what is said is applicable within the wider context of preprocessing of data from EEG
or other modalities (such as MEG) for which noise and artifacts are an issue. These
issues are very similar to those met for Brain Computer Interface (BCI) applications. In
the COCOHA application, the device continuously monitors electrical activity from the
brain for cues to the direction that the user wishes to attend.

A companion document, the COCOHA report on Alternative Technologies for Brain
Signal Sensing, investigates the possibility of obtaining better signals at the origin.

2. The importance of preprocessing

With ~ 90 billion neurons and an order of magnitude more synapses, the human brain is
an extremely complex machine (Herculano-Houzel 2012). EEG can record signals from
anywhere between a handful of electrodes to a dense array of up to 1024 electrodes, so
the number of "observable" signals is much smaller than the number of brain signals to
observe, and the picture obtained is necessarily impoverished. Furthermore, current
spread between cortical sources and electrodes implies that each electrode picks up
multiple sources, whereas each source impinges upon multiple electrodes. The resulting
many-to-many mapping between sources and electrodes greatly complicates the task of
isolating useful activity, because useful signals are mixed with irrelevant cortical activity
on every electrode. Finally, in addition to such irrelevant cortical activity, there are
numerous non-cortical sources of noise and artifact that contaminate the signals, such as
power-line noise (50 or 60 Hz), electromagnetic interference (e.g. from cell phones),
skin-electrode contact noise, muscular artifacts, eye-blinks, etc. The amplitude of
unwanted signals can greatly exceed that of useful signals, in which case the data cannot
be exploited without significant processing.

Typically, a control signal is derived from EEG by applying a "classifier" that defines a
boundary within the space of measured data distinguishing between one outcome (e.g.
attend left) and another outcome (e.g. attend right). The occurrence of an artifact can
push the decision to the wrong side of that boundary, causing the device to make a
decision that is contrary to the user's intention (e.g focus the acoustic processor to the
left rather than the right). Furthermore, the boundary applied by the classifier itself is
usually "learned" from training data using various techniques taken from the field of
Machine Learning (e.g. Lotte et al 2007, Wolpaw and Wolpaw 2012). The presence of



artifacts in the data used for learning can lead to an incorrect or suboptimal boundary,
for example if the artifacts were present more often for one class than for the other.

Preprocessing is thus a critical issue, both in the research and development phase for
interpreting experimental data, and for the implementation of a workable device.

3. Sources of artifacts and noise

It is useful to understand the sources of artifact and noise, and the nature of their
signals, so as to more effectively suppress or mitigate their effects. The distinction
between artifact and noise itself is arbitrary (we use both words interchangeably), but
one thing is clear: we should not expect 'noise’' to be of the Gaussian and/or white sort
familiar to many signal-processing practitioners. Apart from thermal noise which is
spectrally white with Gaussian characteristics, most sources have non-stationary, non-
white and/or non-Gaussian distributions, and there may also be correlations between
different sources.

Noise sources can be divided into three classes: (1) environmental, such as power lines
or electromagnetic sources, (2) instrumental, such as electrode/skin contact noise or
quantization noise, and (3) physiological, including muscle artifacts, eye-blinks, cardiac
signals, and irrelevant neural activity.

From a signal processing point of view it is useful make a different classification
between: (a) channel-specific noise, such as electrode/skin contact noise or localized
artifacts from shallow muscles proximal to an electrode, and (b) channel-shared noise,
such as results from many environmental and physiological sources. The latter can often
be attenuated with the help of a spatial filter (for example provided by a beamforming or
ICA algorithm) whereas the former cannot.

3.1 Power line noise

Power line noise is a ubiquitous artifact. Electrical power is usually distributed as
sinusoidally alternating currents at 50 or 60 Hz within power cables, common in most
environments, that radiate both electrical and magnetic fields. EEG signals are tiny (~ 1-
100 microvolts) and easily swamped by artifactual signals via capacitive coupling
(electric field) and/or inductive coupling (magnetic field). The contaminating signal may
include components at the fundamental frequency (50 or 60 Hz) as well as multiples of
that frequency. The amplitude and phase of all of these components may fluctuate
depending on shifts in power consumption (possibly remote within the power grid), and
of course with movements of the subject within these fields. These artifacts are
addressed by (a) careful design of circuits and shielding, (b) spectral filtering (e.g. a
notch filter) and (c) regression or spatial filtering, see below.

3.2 Other electromagnetic sources

Electromagnetic waves can be emitted by various kinds of apparatus (video monitors,
switching power supplies, computers, wifi stations, cell phones and cell phone relays,
radio and TV transmitters etc.). This interference is often in a high frequency range,
whereas EEG signals are usually filtered to a restricted range (e.g. < 500 Hz) by the
hardware filter that precedes analog-to-digital conversion. EEG might thus be expected
to be immune to such higher frequency noise, but two factors can thwart that
expectation. One is that a high-amplitude signal may be insufficiently attenuated by the
(finite) attenuation of the filter. Another is that the high-frequency signals may be
demodulated (or intermodulated with other signals) due to non-linearities in the
electronics (e.g. clipping) or at the skin-electrode contact. Such situations are very hard



to diagnose because the effect (low frequency signal) bears little resemblance to its
cause (high-frequency source). Motion or vibration within a magnetic field (e.g. Earth's)
can induce potentials in the EEG leads, and in the presence of electrical charges (e.g.
triboelectric), movement-induced variations of capacitance between electrodes and
nearby objects can cause potential variations.

3.3 Sensor and electrode contact noise

The contact between electrode and skin is the site of multiple noise-generating
phenomena (Huigen et al 2002; Hokajérvi 2012). For electrodes, most commonly used in
the laboratory (Ag/AgCl with electrolytic gel), the noise is mainly produced by the
skin/electrolyte interface. In the absence of motion, this noise has a low-pass spectral
characteristic (1/f“ with 1.5 < a < 2.0; Huigen et al 2002), implying that the noise is
dominated by slow variations (electrode drift). These are troublesome because they interfere
with the analysis of relatively slow EEG patterns, and require the use of high-pass filters that
can introduce other issues (see below). Sweat can also induce slow variations.

Relatively high amplitude artifacts can be generated by motion of the electrode/gel relative to
the skin or deformation of the skin itself. These can be manifest as a high-amplitude transient,
and/or a step of the resting potential. A particular form of motion artifact called "pulse" can
arise from a blood vessel proximal to the electrode.

The noise from one electrode is usually uncorrelated with that of the other electrodes (it is
"channel specific"). However, each electrode measurement is necessarily made relative to
another electrode (reference). Noise at the reference electrode contact will on the contrary
appear as correlated over signals measured on the other electrodes. Motion artifacts might also
be correlated across several electrodes. Uncorrelated noise is problematic because it cannot be
factored out using linear component analysis techniques such as ICA.

Electrode-skin noise is a major issue for an application such as ours, because the steps that
can be taken to reduce it (electrolytic gels, skin abrasion) usually conflict with requirements
of comfort and ergonomics. Less constraining alternatives (e.g. dry electrodes) tend to have
higher noise. Dealing with this type of noise is an important task for preprocessing.

Additional sources of noise are thermal noise (at the electrode-gel interface and in the
electronics) and quantization noise. They can usually be neglected relative than other sources,
although they may need to be taken into account if (a) reduced quantization (e.g. 8-16 bits) is
imposed by implementation constraints, (b) information is to be gathered from the higher
frequency regions.

3.4 Muscle artifacts

Many small muscles are present under the skin, in particular on the head where EEG
electrodes are attached. Muscle artifacts typically take the form of regular or irregularly-
spaced spike trains, with a spectral composition dominated by relatively high
frequencies (Goncharova et al 2003; Fatourechi et al 2007; McMenamin et al 2011; Ma et
al 2012). Muscle artifacts are troublesome because they mask cortical signals in the
gamma band (>20 Hz) and they may also depend on mental state or task, and thus
masquerade as cortical correlates of those tasks. Artifacts from shallow muscle fibers
close to an electrode may be specific to that fiber, whereas deeper muscle activity may
be correlated across electrodes.

Muscle artifacts are a nuisance in experiments that try to measure cortical activity but,
in a control system they are potentially of value if the user is able to learn to reliably and



selectively control the muscles that produce them. A brain-control purist might object,
but that is of little concern if the system works.

3.4 Ocular and cardiac artifacts

The eyeball acts like an electric dipole with an anterior positive pole (cornea) and
posterior negative pole (retina). Eye ball movements (in particular eyeblinks) produce
large deflections, principally in electrodes in frontal positions. These may mask cortical
activity of interest, or even masquerade as cortical activity (if correlated with cognitive
state). They can also be of use as control signals if the user is willing to have his or her
eye movements enrolled for that purpose. Ocular control is a plausible option to control
a hearing aid (Kidd et al 2013).

EEG signals may also be contaminated from potentials from the tongue (which is also
polarized) as well as from heart activity. Cardiac, ocular and similar artifacts usually
affect multiple electrodes, which makes them amenable to linear component analysis
techniques. Signals from electrodes placed so as to pick up only cardiac activity
(electrocardiography, ECG) or ocular activity (electrooculography, OEG) can be used to
project out cardiac or ocular activity from the EEG using regression techniques.

3.5 Unwanted cortical activity

The brain is the theater of countless neural processes that all impinge on the EEG
electrodes. Only a fraction of the measured signal reflects any single process, for
example a cortical process indicative of attention. Most of the signal variance reflects the
myriad other ongoing cortical processes. An example of a prominent contribution to EEG
signals is known as "alpha" activity, a high-amplitude oscillatory signal that occurs in
bursts, with a frequency in the 8-10 Hz region. There are multiple sources of alpha
activity. Alpha amplitude from occipital sources increases when eyes are closed,
whereas that from sources in other regions may decrease when cortical processing is
engaged. The large amplitude and dimensionality (see below) of alpha may contribute to
obscure other sources of interest, However, to the extent that characteristics of alpha
activity are indicative of attential, it may also be harnessed to derive a control signal.

In addition to alpha, there are many other forms of ongoing EEG activity that must be
suppressed or discounted if we wish to derive a reliable control signal. Cortical sources
are usually deep enough to impinge on multiple electrodes, and thus are amenable to
removal using linear spatial filtering techniques (e.g. [CA).

4. Strategies to suppress or mitigate artifacts and noise
There exists a large range of preprocessing tools reported in the literature, to which the
COCOHA project has contributed.

4.1 Dimensionality

Before delving into specific strategies and tools, it is worth considering a very useful
concept, that of dimensionality of the data. The physical process that produces the EEG
signal is usually linear to a very good approximation, which means that the signal
produced by two brain sources is the sum of the signals produced by each (additivity),
and the amplitude of the measured signal scales with the amplitude of the source that
produced it (proportionality). That being the case, it is useful to describe the measured
signals (as well as the neural electrical activity that gives rise to them) as belonging to a
vector space. A vector space is a set for which any sum of elements (or "points") also
belongs to the space, as does the product of any element by a scalar.



The EEG signals recorded by an array of electrodes span a vector space that includes all
weighted sums of these signals (such as might be produced by a spatial filter, or an
analysis algorithm such as ICA). For N electrodes, the dimensionality of such a space is at
most N. It can be smaller than the number of signals if the signals are linearly dependent,
e.g. one signal equals a weighted sum of the others. The myriad sources of electrical
activity within the brain (and elsewhere) span a vector space of much larger
dimensionality. Since EEG signals are weighted sums of these signals, the space that they
span is a subspace of the larger space

The concepts of subspace and dimensionality are very useful. Many analysis strategies
can be understood as finding a subspace that spans most of the interfering noise and
artifacts, so that brain activity of interest can be observed within the subspace
orthogonal to it. Another way of expressing this, is to say that noise and artifact are
projected, or regressed out of the data. This strategy can only work if interference and
target live within distinct subspaces, which requires that there be enough dimensions to
start with. In general, P distinct and uncorrelated noise sources span a subspace of
dimension P, and for there to exist a subspace orthogonal to it containing activity of
interest we must have N>P. Moreover, if there are Q distinct sources of interest, we must
have N>=P+Q As a rule of thumb: the greater the dimensionality of the data the better.
The more electrodes, sensors, etc., the more interference sources can be projected out,
and the more sources of interest can be resolved.

There are two caveats to this rule. One is the presence of sensor-specific noise
(uncorrelated with other sensors), such that the space spanned by N electrode signals
already contains N noise sources. That being the case, other sources can only be resolved
approximately. The maximum number of sources that can be isolated depends on the
"noise floor" determined by sensor-specific noise, so that once that number is reached
adding more sensors will not be useful. The second caveat is that many methods involve
parameters (such as regression coefficients) that must be learned from the data. The
higher the dimensionality the greater the risk of overfitting. This too may impose a
practical limit on the number of additional sensor channels to consider.

The number of dimensions of N-channel data is at most N, but it can be smaller in
particular if each channel contains fewer than N samples of data. For M samples the
dimensionality is the smaller of M and N. Serial correlations within the data (for
example if it is low-pass filtered) may cause the effective dimensionality to be yet
smaller. In general, signals that have high serial correlation tend to behave as if they
were shorter, and have fewer degrees of freedom, than their number of samples would
suggest.

4.2 Preprocessing approaches

4.2.1 Denoise or discount?

Corruption by noise or artifact cause the data to be less reliable than if they were intact.
Denoising involves processing to remove or attenuate the noise, whereas discounting
involves marking invalid portions so that they do not influence the outcome of
processing. For example, if an electrode is detached or has poor contact, its data may be
completely unreliable, or if a strong electrical glitch affected all channels during a time
interval, data values corresponding to that interval may need to be discounted.

Discounting may be associated with interpolation to restore the semblance that the data
are complete. It is important to realize that interpolation does not restitute the



information that was lost by masking by the artifact and/or discounting. Interpolation is
convenient because standard processing algorithms to be used, but it may invalidate
statistical analysis by reducing the amount of variance and/or the degrees of freedom in
the data. For example, interpolating a missing channel as a weighted sum of its
neighbors reduces data dimensionality by 1.

4.2.2 Fourier filtering

Noise and signal may have different spectral characteristics. For example, power-line
noise is usually concentrated at 50 Hz (or 60Hz) and its harmonics, alpha activity is
usually concentrated in the 8-12 Hz region, and electrode drift is mainly restricted to
very low frequencies.

Filters are perhaps the most commonly used tool in our panoply. In addition to the anti-
aliasing low-pass filter in hardware that precedes analogue-to-digital conversion, it is
common to use a high pass filter (with cutoff frequency typically in the 0.1 Hz to 1 Hz
range) to attenuate drift, and possibly a notch filter at the line frequency, or a low-pass
filter (for example at 20 or 30Hz) to attenuate higher components judged non-
informative and improve the smoothness of waveform plots.

Fourier filtering is extremely useful but entails several risks. An obvious concern is that
the signal may extend to the region suppressed by the filter, and thus be distorted. This
is best understood by noting that filtering involves convolution of the waveform by the
impulse response of the filter, so that each sample of the filtered signal is a weighted
sum of several samples of the original signal. The new sample thus reflects events within
an extended time interval, and the temporal relation between the filtered waveform and
events in the brain is thus blurred, which may be a problem when making inferences
about the latency of a brain response relative to a stimulus, or the causal relations
between events. Furthermore, if the filter's transfer function is narrow or has a sharp
transition, its response to a transient event may be oscillatory (ringing) possibly leading
to incorrect conclusions concerning the oscillatory nature of brain activity. High-pass
filtering may convert a unipolar pulse into a multiphasic response, the positive and
negative deflections of which are purely artifactual (i.e. reflecting only properties of the
filter). The span of such temporal distortion equals the length of the filter's impulse
response, and is generally more marked as the filter is spectrally narrow or sharp.

For these reasons, it is common to consider alternatives to Fourier filtering as described
below.

4.2.3 Spatial filtering

Noise and signal may likewise have different spatial characteristics. Spatial filtering
consists in replacing the signal on each channel by a weighted sum of signals on all other
channels. With appropriate weights, spatial filtering can attenuate or suppress the
contribution of one or several noise sources. Weights can be predetermined, or else
derived automatically based on a data-driven algorithm. Linear spatial filtering is a
powerful tool that makes full use of the multidimensional nature of data provided by
EEG electrode arrays.

Examples of predetermined spatial filtering are rereferencing, where the signal from a
particular electrode (for example mastoid), or the mean signal over electrodes, is
subtracted from the signals of all electrodes, or a Laplacian filter, where the mean of the
nearest neighbors is subtracted from each electrode. Examples of data-driven filtering



are the filters determined by component-analysis techniques such as ICA or
beamforming.

By extension, suppression of a reference signal (for example ECG or EOG) by regression
on the data can be assimilated to a form of spatial filtering (the reference signal being
treated as one particular spatial channel). A spatial filter can be understood as a linear
transform in the space spanned by the sensor signals. A filter that suppresses a noise
source can be understood as defining a projection on the subspace orthogonal to that
noise source.

More on the design of optimal spatial filters below.

4.2.3 Detrending

Particularly troublesome is the "drift" that arises at the electrode-skin interface, a slowly
varying potential that shifts the "baseline" potential on each EEG electrode. It interferes
with the analysis of slow potentials in the brain, and is a primary motivation for applying
high-pass filtering to EEG. High-pass filtering with a low-frequency cutoff (typically 0.1
to 1 Hz) requires a long impulse response, potentially leading to extensive filter-induced
distortions. Electrode drift is usually uncorrelated between electrodes, and thus is not
amenable to spatial filtering techniques. Furthermore, the strong serial correlation
reduces the degrees of freedom, promoting overfitting.

An alternative to high-pass filtering is detrending, in which a slowly-varying function
(for example a linear ramp or low-order polynomial) is fit to the data, and then
subtracted. Each sample of the detrended data is now function of all the data, raising
concerns similar to those raised for filtering, but the constraint of a low-order fit limits
the impact of waveform distortion.

In the presence of temporally-local glitches (for example electrode motion artifacts)
detrending suffers a similar problem as met in high-pass filtering where a glitch can
cause ringing of the filter. The fit is affected by the glitch, causing the trend to be
imperfectly removed on the non-glitch portions, and in some situations, a trend can be
introduced where none was present initially. A solution is robust detrending, in which
samples too distant from the fit are simply discounted, so that the fit depends only on
the non-glitch parts. The glitch itself is then addressed by other means (see below).
Similar processing is harder to implement in a high-pass filter, so robust detrending is a
tool of choice to address electrode drift.

4.2.4 Sensor noise suppression

Sources that impinge on several sensors can be suppressed by forming a linear
combination with appropriate coefficients so that they cancel out. This is what
techniques such as ICA or beamforming achieve. A source that impinges on a single
sensor or electrode (for example a local muscle artifact, or electrode-skin noise that was
not suppressed by detrending) cannot be suppressed in this way. The only way to
suppress that noise is to discard the channel, which is of course wasteful.

In other words, the added dimension that the channel offers to the EEG representation is
squandered by its own noise, and if all channels carry such noise, then it is impossible to
obtain a clean subspace by linear projection. This noise floor imposes a hard limit on
our ability to extract weak brain activity from EEG. Without that channel-specific noise
floor, we could partition the data into as many orthogonal subspaces as there are



sensors, thus improving our chances of isolating activity of interest, however weak.
With the noise floor, most analyses yield much fewer exploitable dimensions than
sensors. Dealing with channel-specific noise is thus essential.

This issue is of prime importance within the COCOHA project, because usability
constraints will likely impose a small number of channels, possibly with dry electrodes,
and there may be additional artifacts due to movements. Building on our Sensor Noise
Suppression algorithm (SNS) (de Cheveigné and Simon 2008) we developed the Sparse
Time Artifact Removal algorithm (STAR) (de Cheveigné 2016) that identifies channel-
specific glitches and interpolates them from the intact channels. Whereas the previous
SNS algorithm applied a single linear transform to all the data to suppress noise, STAR
applies a distinct linear transform restricted to the corrupted segments of each channel,
maintaining the full dimensionality of the data. Work is ongoing to lift current limits on
the applicability of the algorithm (currently it cannot handle the case where glitches
occur simultaneously on several channels.

4.2.4 Optimal data-driven spatial filters

Linear spatial filtering allows the data to be projected into the null subspace of noise and
artifacts. The signal-to-noise ratio (SNR) improvement is potentially very large, limited
only by the noise floor imposed by irreducible channel-specific noise (see above).
However this outcome depends crucially on the choice of the filter weights: a slight error
in weights can allow noise components to leak into the cleaned signal.

A data-driven solution can be automatically tuned to the particular artifacts present in
the data, and thus is potentially of better quality than a solution based on prior
knowledge, particularly as the geometry of artifact sources and the properties of the
propagation milieu may not be well known. The downside is that the solution may be
prone to overfitting, which occurs if there is a mismatch between the structure of the
data used to tune the filter, and the data to which it is applied.

There are many data-driven approaches to finding spatial coefficients. The well-known
Principal Component Analysis (PCA) is sometimes proposed for denoising. Its
effectiveness in that role is limited, but it serves as an important ingredient in other
methods. Independent Component Analysis (ICA) allows data to be transformed into a set
of components that are not only uncorrelated, but also statistically independent
according to some measure of independence. Measures of independence fall in three
main classes: non-Gaussianity, non-stationarity, non-whiteness (Cardoso 2001), and
countless methods have been proposed that exploit various variants of these measures
(Choi et al 2005; Parra et al 2005; Hyvarinen 2012). Many of these have been applied to
EEG analysis and BCI applications (e.g. Cichocki, A. 2004; Delorme et al 2007, 2012
Nicola-Alonzo 2012). ICA produces a set of "independent” components which are then
sorted (manually or by an automatic procedure) into noise and target categories. ICA is
often successful and often used as a preprocessing tool. Downsides are (a) there is not a
single authoritative algorithm but rather a wide range of methods, (b) several methods
are stochastic and do not produce the same result on every trial, (c) computational costs,
(d) the need for post-hoc component selection.

Beamforming finds a filter that minimizes power from all sources except those from a
particular target direction, defined by its lead matrix. Beamforming has a long history
first in radio antenna array processing, then in microphone array processing (e.g.
Benesty 2007), and is a well-developed technique in brain signal processing (e.g.
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Sekihara et al 2006; Grosse-Wenstrup et al 2009). While data-driven, the method
requires knowledge of the lead matrix of the desired sources. Classically this is obtained
from geometrical knowledge, but it can also be derived from other sources.

Common Spatial Patterns (CSP) is a powerful method commonly used in the BCI
community, but strangely less in the EEG and brain imaging community. CSP finds a
linear transform of the data that maximizes the variance ratio between two intervals
(Koles et al 1990; Fukunaga et al 1970; Bashashati et al 2007; Nicola-Alonso et al 2012;
Kawanabe et al 2014; Samek et al 2014). Our work has contributed to extending the
applicability of this method in the wider framework of Joint Decorrelation (JD) or
Denoising Source Separation (DSS) (de Cheveigné and Simon 2008; de Cheveigné et al
2010, 2012; de Cheveigné and Parra 2014). This has been applied in the COCOHA project
to optimize the extraction of oscillatory components such as alpha that are a useful cue
to spatial attention (de Cheveigné and Arzounian 2015).

A word of warning: data-driven solutions are designed to optimize a criterion (e.g.
narrow-band power), and may appear misleadingly successful in that respect
(Kriegeskorte et al 2009). When judging the effectiveness of the outcome it is important
to use appropriate cross-validation techniques. This is related to the issue of overfitting
in which the solution is tuned to the training data but not generalizable to unseen data.

4.2.5 Time-varying analysis

As stressed above, dimensionality of the noise subspace (and/or noise floor of the
remaining signal subspace) sets the ultimate limit of our ability to isolate weak cortical
activity. Isolating weak activity (by suppressing the many stronger sources) is
paramount to our application. While machine-learning techniques (e.g. deep networks)
may be useful to optimally exploit the available noise-corrupted data, it is obvious that
radically better performance can be expected if the noise is removed.

The dimensionality of the noise space is determined by the number of distinct
(uncorrelated) noise sources that are active within the analysis interval. However, the
activity of many sources is temporally sparse, and so we can expect noise dimensionality
to be smaller if analysis is conducted on shorter intervals. This idea is exploited by the
STAR algorithm (de Cheveigné 2016) to suppress channel-specific sources of noise
without reducing dimensionality (as would occur with e.g. ICA, ]D or beamforming).

The thrust of our efforts in the COCOHA project is devoted to extending these ideas. We
believe that smart time-varying analysis is the ultimate frontier towards a robust and
reliable decoding device.

4.3 Online real-time preprocessing

Most algorithms (e.g. ICA, beamforming, |D, etc.) are formulated for batch processing,
which is not useful in a device that must produce a control signal in real time. It is
essential that the algorithms that we propose be realizable in real time. This constraint
should not be imposed in the algorithm development phase, because it would slow the
development of new ideas, but it remains a preoccupation. Fortunately most algorithms
take as their starting point the covariance matrix of the data (possibly augmented with a
range of time shifts), which is the mean over time of the cross-products between
channels, which can be calculated according to a time-varying schedule and updated in
real time. Real-time processing is supported by the COCOHA toolbox.
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4.4 Toolboxes for preprocessing

Many preprocessing methods are implemented in publicly available software toolboxes
(in Python, Matlab or C++). We maintain the NoiseTools toolbox
(http://audition.ens.fr/adc/NoiseTools/) which offers general preprocessing tools, and
the COCOHA toolbox (soon to be made public) oriented to brain decoding.

Many other toolboxes are available, including EEGLab (https://sccn.ucsd.edu/eeglab/),
FieldTrip (http://www.fieldtriptoolbox.org/), SPM (http://www.fil.ion.ucl.ac.uk/spm/),
BrainStorm (http://neuroimage.usc.edu/brainstorm/), Biosig
(http://biosig.sourceforge.net), NutMEG (http: //www.nitrc.org/projects/nutmeg/),
MNE (http://martinos.org/mne/stable/index.html), OpenMEEG
(http://openmeeg.github.io), SciKit (http://scikit-learn.org/stable/).

Some resources for realtime processing include: OpenEEG
(http://openeeg.sourceforge.net/doc/), OpenVibe (http://openvibe.inria.fr), PureData
(https://puredata.info), EEGSynth (https://github.com/eegsynth/eegsynth).

Summary

Electrical signals recorded by EEG electrodes are extremely noisy, and this is a major
obstacle for deriving robust and timely control signals. Preprocessing is necessary to
remove and/or discount the noise and artifacts. Preprocessing is a major thrust of the
efforts within the COCOHA project to design a brain-controlled hearing aid device that
can well enough to really help people who need it.
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