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This	document	provides	an	overview	of	preprocessing	techniques	for	EEG	signals. It is 
part of Deliverable D2.2 of the COCOHA project, funded by the H2020 ICT programme of 
the European Union under grant number 644732. COCOHA aims to help hearing impaired 
persons so that they can deal with challenging noisy environments, by providing them with 
the means to steer sophisticated acoustic processing (such as microphone arrays) with control 
signals derived directly from the brain.  This document is available at 
https://cocoha.org/cocoha-reports/. See also the COCOHA report on Alternative Technologies 
for Brain Signal Sensing. 

	

Executive	summary	

1. Preprocessing	aims	to	improve	the	quality	of	EEG	signals	so	that	decoding	
algorithms	can	extract	reliable	control	signals.		

2. Raw	EEG	signals	are	contaminated	by	multiple	artifacts	from	environmental	
noise	sources	(e.g.	electromagnetic	interference),	the	electrode-skin	interface,	
muscular	or	ocular	activity,	and	irrelevant	brain	activity.	

3. A	basic	distinction	can	be	made	between	channel-specific	noise	due	for	example	
to	the	electrode-skin	interface	or	local	muscle	activity,	and	channel-shared	noise,	
for	example	from	irrelevant	brain	sources.	Spatial	filtering	is	more	useful	for	the	
latter	than	the	former.	

4. Four	strategies	are	available:	(a)	reduce	noise	at	the	source,	(b)	process	signals	to	
improve	their	quality,	(c)	design	robust	decoding	algorithms,	(d)	train	subjects	to	
optimize	their	cortical	signals.	This	document	focuses	on	(b).	

5. A	wide	panoply	of	methods	is	available	from	the	literature,	and	new	methods	
have	developed	within	the	COCOHA	project.	

6. EEG	signals	are	typically	measured	on	multiple	channels,	yielding	
multidimensional	data	to	which	linear	methods	such	as	spatial	filtering	can	be	
applied	(e.g.	ICA	or	beamforming).	

7. Dimensionality	of	the	data	is	a	critical	factor.	Artifacts	are	more	likely	to	be	
separable	within	high-dimensional	data	(many	channels)	but	this	advantage	may	
be	mitigated	by	overfitting	and	noise.	

8. The	COCOHA	project	has	developed	several	new	methods.	Of	particular	interest	
are	methods	that	exploit	the	nonstationarity	of	the	noise	correlation	structure.	
Several	have	been	published,	others	are	under	development.	

9. Preprocessing	is	crucial	to	the	success	of	the	COCOHA	project.	
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1.	The	COCOHA	context	
The	COCOHA	project	(http://cocoha.org/)	funded	by	the	EU	H2020	initiative	aims	at	
developing	a	"smart"	hearing	aid	in	which	acoustic	processing	is	under	the	control	of	
signals	from	the	brain	recorded	by	electroencephalography	(EEG)	or	other	means.	With	
such	a	device	a	hearing	impaired	listener	could	focus	attention	on	a	particular	sound	
source	(for	example	a	person	speaking),	and	isolate	it	from	noise	and	competing	sources	
with	the	assistance	of	sophisticated	acoustic	processing	(e.g.	microphone	arrays).	Our	
intact	auditory	is	quite	adept	at	performing	such	a	task,	usually	without	our	noticing,	but	
this	ability	is	reduced	by	impairment.	The	COCOHA	project	aims	to	restore	this	ability	by	
artificial	means.		
A	major	impediment	is	that	EEG	signals	are	usually	very	noisy	and	contaminated	by	
various	artifacts	that	mask	the	desired	cortical	signals.		These	may	be	removed	either	by	
preprocessing	the	EEG	signals	before	extracting	the	control	signals,	or	else	by	designing	
the	control	signal	extraction	algorithms	such	that	they	are	insensitive	to	the	presence	of	
artifacts.	The	distinction	between	the	two	approaches	is	to	some	extent	arbitrary,	and	
here	we	adopt	the	viewpoint	of	preprocessing.	Our	focus	is	the	COCOHA	task,	but	much	
of	what	is	said	is	applicable	within	the	wider	context	of	preprocessing	of	data	from	EEG	
or	other	modalities	(such	as	MEG)	for	which	noise	and	artifacts	are	an	issue.	These	
issues	are	very	similar	to	those	met	for	Brain	Computer	Interface	(BCI)	applications.	In	
the	COCOHA	application,	the	device	continuously	monitors	electrical	activity	from	the	
brain	for	cues	to	the	direction	that	the	user	wishes	to	attend.			
A	companion	document,	the	COCOHA	report	on	Alternative	Technologies	for	Brain	
Signal	Sensing,	investigates	the	possibility	of	obtaining	better	signals	at	the	origin.	

2.	The	importance	of	preprocessing	
With	~	90	billion	neurons	and	an	order	of	magnitude	more	synapses,	the	human	brain	is	
an	extremely	complex	machine	(Herculano-Houzel	2012).	EEG	can	record	signals	from	
anywhere	between	a	handful	of	electrodes	to	a	dense	array	of	up	to	1024	electrodes,	so	
the	number	of	"observable"	signals	is	much	smaller	than	the	number	of	brain	signals	to	
observe,	and	the	picture	obtained	is	necessarily	impoverished.	Furthermore,	current	
spread	between	cortical	sources	and	electrodes	implies	that	each	electrode	picks	up	
multiple	sources,	whereas	each	source	impinges	upon	multiple	electrodes.	The	resulting	
many-to-many	mapping	between	sources	and	electrodes	greatly	complicates	the	task	of	
isolating	useful	activity,	because	useful	signals	are	mixed	with	irrelevant	cortical	activity	
on	every	electrode.	Finally,	in	addition	to	such	irrelevant	cortical	activity,	there	are	
numerous	non-cortical	sources	of	noise	and	artifact	that	contaminate	the	signals,	such	as	
power-line	noise	(50	or	60	Hz),	electromagnetic	interference	(e.g.	from	cell	phones),	
skin-electrode	contact	noise,	muscular	artifacts,	eye-blinks,	etc.		The	amplitude	of	
unwanted	signals	can	greatly	exceed	that	of	useful	signals,	in	which	case	the	data	cannot	
be	exploited	without	significant	processing.	
Typically,	a	control	signal	is	derived	from	EEG	by	applying	a	"classifier"	that	defines	a	
boundary	within	the	space	of	measured	data	distinguishing	between	one	outcome	(e.g.	
attend	left)	and	another	outcome	(e.g.	attend	right).	The	occurrence	of	an	artifact	can	
push	the	decision	to	the	wrong	side	of	that	boundary,	causing	the	device	to	make	a	
decision	that	is	contrary	to	the	user's	intention	(e.g	focus	the	acoustic	processor	to	the	
left	rather	than	the	right).		Furthermore,	the	boundary	applied	by	the	classifier	itself	is	
usually	"learned"	from	training	data	using	various	techniques	taken	from	the	field	of	
Machine	Learning	(e.g.	Lotte	et	al	2007,	Wolpaw	and	Wolpaw	2012).	The	presence	of	
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artifacts	in	the	data	used	for	learning	can	lead	to	an	incorrect	or	suboptimal	boundary,	
for	example	if	the	artifacts	were	present	more	often	for	one	class	than	for	the	other.	
Preprocessing	is	thus	a	critical	issue,	both	in	the	research	and	development	phase	for	
interpreting	experimental	data,	and	for	the	implementation	of	a	workable	device.	

3.	Sources	of	artifacts	and	noise	
It	is	useful	to	understand	the	sources	of	artifact	and	noise,	and	the	nature	of	their	
signals,	so	as	to	more	effectively	suppress	or	mitigate	their	effects.	The	distinction	
between	artifact	and	noise	itself	is	arbitrary	(we	use	both	words	interchangeably),	but	
one	thing	is	clear:	we	should	not	expect	'noise'	to	be	of	the	Gaussian	and/or	white	sort	
familiar	to	many	signal-processing	practitioners.	Apart	from	thermal	noise	which	is	
spectrally	white	with	Gaussian	characteristics,	most	sources	have	non-stationary,	non-
white	and/or	non-Gaussian	distributions,	and	there	may	also	be	correlations	between	
different	sources.		
Noise	sources	can	be	divided	into	three	classes:	(1)	environmental,	such	as	power	lines	
or	electromagnetic	sources,	(2)	instrumental,	such	as	electrode/skin	contact	noise	or	
quantization	noise,	and	(3)	physiological,	including	muscle	artifacts,	eye-blinks,	cardiac	
signals,	and	irrelevant	neural	activity.			
From	a	signal	processing	point	of	view	it	is	useful	make	a	different	classification	
between:	(a)	channel-specific	noise,	such	as	electrode/skin	contact	noise	or	localized	
artifacts	from	shallow	muscles	proximal	to	an	electrode,	and	(b)	channel-shared	noise,	
such	as	results	from	many	environmental	and	physiological	sources.	The	latter	can	often	
be	attenuated	with	the	help	of	a	spatial	filter	(for	example	provided	by	a	beamforming	or	
ICA	algorithm)	whereas	the	former	cannot.	

3.1	Power	line	noise	
Power	line	noise	is	a	ubiquitous	artifact.	Electrical	power	is	usually	distributed	as	
sinusoidally	alternating	currents	at	50	or	60	Hz	within	power	cables,	common	in	most	
environments,	that	radiate	both	electrical	and	magnetic	fields.	EEG	signals	are	tiny	(~	1-
100	microvolts)	and	easily	swamped	by	artifactual	signals	via	capacitive	coupling	
(electric	field)	and/or	inductive	coupling	(magnetic	field).	The	contaminating	signal	may	
include	components	at	the	fundamental	frequency	(50	or	60	Hz)	as	well	as	multiples	of	
that	frequency.	The	amplitude	and	phase	of	all	of	these	components	may	fluctuate	
depending	on	shifts	in	power	consumption	(possibly	remote	within	the	power	grid),	and	
of	course	with	movements	of	the	subject	within	these	fields.		These	artifacts	are	
addressed	by	(a)	careful	design	of	circuits	and	shielding,	(b)	spectral	filtering	(e.g.	a	
notch	filter)	and	(c)	regression	or	spatial	filtering,	see	below.		

3.2	Other	electromagnetic	sources	
Electromagnetic	waves	can	be	emitted	by	various	kinds	of	apparatus	(video	monitors,	
switching	power	supplies,	computers,	wifi	stations,	cell	phones	and	cell	phone	relays,	
radio	and	TV	transmitters	etc.).	This	interference	is	often	in	a	high	frequency	range,	
whereas	EEG	signals	are	usually	filtered	to	a	restricted	range	(e.g.	<	500	Hz)	by	the	
hardware	filter	that	precedes	analog-to-digital	conversion.	EEG	might	thus	be	expected	
to	be	immune	to	such	higher	frequency	noise,	but	two	factors	can	thwart	that	
expectation.	One	is	that	a	high-amplitude	signal	may	be	insufficiently	attenuated	by	the	
(finite)	attenuation	of	the	filter.	Another	is	that	the	high-frequency	signals	may	be	
demodulated	(or	intermodulated	with	other	signals)	due	to	non-linearities	in	the	
electronics	(e.g.	clipping)	or	at	the	skin-electrode	contact.	Such	situations	are	very	hard	
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to	diagnose	because	the	effect	(low	frequency	signal)	bears	little	resemblance	to	its	
cause	(high-frequency	source).	Motion	or	vibration	within	a	magnetic	field	(e.g.	Earth's)	
can	induce	potentials	in	the	EEG	leads,	and	in	the	presence	of	electrical	charges	(e.g.	
triboelectric),	movement-induced	variations	of	capacitance	between	electrodes	and	
nearby	objects	can	cause	potential	variations.		

3.3	Sensor	and	electrode	contact	noise	
The	contact	between	electrode	and	skin	is	the	site	of	multiple	noise-generating	
phenomena	(Huigen	et	al	2002;	Hokajärvi 2012).  For electrodes, most commonly used in 
the laboratory (Ag/AgCl with electrolytic gel), the noise is mainly produced by the 
skin/electrolyte interface.  In the absence of motion, this noise has a low-pass spectral 
characteristic (1/𝑓$ with 1.5 < 𝛼 < 2.0; Huigen et al 2002), implying that the noise is 
dominated by slow variations (electrode drift). These are troublesome because they interfere 
with the analysis of relatively slow EEG patterns, and require the use of high-pass filters that 
can introduce other issues (see below). Sweat can also induce slow variations. 
Relatively high amplitude artifacts can be generated by motion of the electrode/gel relative to 
the skin or deformation of the skin itself. These can be manifest as a high-amplitude transient, 
and/or a step of the resting potential. A particular form of motion artifact called "pulse" can 
arise from a blood vessel proximal to the electrode. 
The noise from one electrode is usually uncorrelated with that of the other electrodes (it is 
"channel specific"). However, each electrode measurement is necessarily made relative to 
another electrode (reference). Noise at the reference electrode contact will on the contrary 
appear as correlated over signals measured on the other electrodes. Motion artifacts might also 
be correlated across several electrodes. Uncorrelated noise is problematic because it cannot be 
factored out using linear component analysis techniques such as ICA. 
Electrode-skin noise is a major issue for an application such as ours, because the steps that 
can be taken to reduce it (electrolytic gels, skin abrasion) usually conflict with requirements 
of comfort and ergonomics. Less constraining alternatives (e.g. dry electrodes) tend to have 
higher noise.  Dealing with this type of noise is an important task for preprocessing. 
Additional sources of noise are thermal noise (at the electrode-gel interface and in the 
electronics) and quantization noise. They can usually be neglected relative than other sources, 
although they may need to be taken into account if (a) reduced quantization (e.g. 8-16 bits) is 
imposed by implementation constraints, (b) information is to be gathered from the higher 
frequency regions. 

3.4	Muscle	artifacts	
Many	small	muscles	are	present	under	the	skin,	in	particular	on	the	head	where	EEG	
electrodes	are	attached.	Muscle	artifacts	typically	take	the	form	of	regular	or	irregularly-
spaced	spike	trains,	with	a	spectral	composition	dominated	by	relatively	high	
frequencies	(Goncharova	et	al	2003;	Fatourechi	et	al	2007;	McMenamin	et	al	2011;	Ma	et	
al	2012).	Muscle	artifacts	are	troublesome	because	they	mask	cortical	signals	in	the	
gamma	band	(>20	Hz)	and	they	may	also	depend	on	mental	state	or	task,	and	thus	
masquerade	as	cortical	correlates	of	those	tasks.		Artifacts	from	shallow	muscle	fibers	
close	to	an	electrode	may	be	specific	to	that	fiber,	whereas	deeper	muscle	activity	may	
be	correlated	across	electrodes.	
Muscle	artifacts	are	a	nuisance	in	experiments	that	try	to	measure	cortical	activity	but,	
in	a	control	system	they	are	potentially	of	value	if	the	user	is	able	to	learn	to	reliably	and	
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selectively	control	the	muscles	that	produce	them.	A	brain-control	purist	might	object,	
but	that	is	of	little	concern	if	the	system	works.	

3.4	Ocular	and	cardiac	artifacts	
The	eyeball	acts	like	an	electric	dipole	with	an	anterior	positive	pole	(cornea)	and	
posterior	negative	pole	(retina).	Eye	ball	movements	(in	particular		eyeblinks)	produce	
large	deflections,	principally	in	electrodes	in	frontal	positions.	These	may	mask	cortical	
activity	of	interest,	or	even	masquerade	as	cortical	activity	(if	correlated	with	cognitive	
state).		They	can	also	be	of	use	as	control	signals	if	the	user	is	willing	to	have	his	or	her	
eye	movements	enrolled	for	that	purpose.	Ocular	control	is	a	plausible	option	to	control	
a	hearing	aid	(Kidd	et	al	2013).	
EEG	signals	may	also	be	contaminated	from	potentials	from	the	tongue	(which	is	also	
polarized)	as	well	as	from	heart	activity.	Cardiac,	ocular	and	similar	artifacts	usually	
affect	multiple	electrodes,	which	makes	them	amenable	to	linear	component	analysis	
techniques.	Signals	from	electrodes	placed	so	as	to	pick	up	only	cardiac	activity	
(electrocardiography,	ECG)	or	ocular	activity	(electrooculography,	OEG)	can	be	used	to	
project	out	cardiac	or	ocular	activity	from	the	EEG	using	regression	techniques.	

3.5	Unwanted	cortical	activity	
The	brain	is	the	theater	of	countless	neural	processes	that	all	impinge	on	the	EEG	
electrodes.	Only	a	fraction	of	the	measured	signal	reflects	any	single	process,	for	
example	a	cortical	process	indicative	of	attention.	Most	of	the	signal	variance	reflects	the	
myriad	other	ongoing	cortical	processes.	An	example	of	a	prominent	contribution	to	EEG	
signals	is	known	as	"alpha"	activity,	a	high-amplitude	oscillatory	signal	that	occurs	in	
bursts,	with	a	frequency	in	the	8-10	Hz	region.		There	are	multiple	sources	of	alpha	
activity.	Alpha	amplitude	from	occipital	sources	increases	when	eyes	are	closed,	
whereas	that	from	sources	in	other	regions	may	decrease	when	cortical	processing	is	
engaged.	The	large	amplitude	and	dimensionality	(see	below)	of	alpha	may	contribute	to	
obscure	other	sources	of	interest,	However,	to	the	extent	that	characteristics	of	alpha	
activity	are	indicative	of	attential,	it	may	also	be	harnessed	to	derive	a	control	signal.	
In	addition	to	alpha,	there	are	many	other	forms	of	ongoing	EEG	activity	that	must	be	
suppressed	or	discounted	if	we	wish	to	derive	a	reliable	control	signal.	Cortical	sources	
are	usually	deep	enough	to	impinge	on	multiple	electrodes,	and	thus	are	amenable	to	
removal	using	linear	spatial	filtering	techniques	(e.g.	ICA).	

4.	Strategies	to	suppress	or	mitigate	artifacts	and	noise	
There	exists	a	large	range	of	preprocessing	tools	reported	in	the	literature,	to	which	the	
COCOHA	project	has	contributed.	

4.1	Dimensionality	
Before	delving	into	specific	strategies	and	tools,	it	is	worth	considering	a	very	useful	
concept,	that	of	dimensionality	of	the	data.	The	physical	process	that	produces	the	EEG	
signal	is	usually	linear	to	a	very	good	approximation,	which	means	that	the	signal	
produced	by	two	brain	sources	is	the	sum	of	the	signals	produced	by	each	(additivity),	
and	the	amplitude	of	the	measured	signal	scales	with	the	amplitude	of	the	source	that	
produced	it	(proportionality).	That	being	the	case,	it	is	useful	to	describe	the	measured	
signals	(as	well	as	the	neural	electrical	activity	that	gives	rise	to	them)	as	belonging	to	a	
vector	space.	A	vector	space	is	a	set	for	which	any	sum	of	elements	(or	"points")	also	
belongs	to	the	space,	as	does	the	product	of	any	element	by	a	scalar.			
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The	EEG	signals	recorded	by	an	array	of	electrodes	span	a	vector	space	that	includes	all	
weighted	sums	of	these	signals	(such	as	might	be	produced	by	a	spatial	filter,	or	an	
analysis	algorithm	such	as	ICA).	For	N	electrodes,	the	dimensionality	of	such	a	space	is	at	
most	N.	It	can	be	smaller	than	the	number	of	signals	if	the	signals	are	linearly	dependent,	
e.g.	one	signal	equals	a	weighted	sum	of	the	others.	The	myriad	sources	of	electrical	
activity	within	the	brain	(and	elsewhere)	span	a	vector	space	of	much	larger	
dimensionality.	Since	EEG	signals	are	weighted	sums	of	these	signals,	the	space	that	they	
span	is	a	subspace	of	the	larger	space	
The	concepts	of	subspace	and	dimensionality	are	very	useful.	Many	analysis	strategies	
can	be	understood	as	finding	a	subspace	that	spans	most	of	the	interfering	noise	and	
artifacts,	so	that	brain	activity	of	interest	can	be	observed	within	the	subspace	
orthogonal	to	it.		Another	way	of	expressing	this,	is	to	say	that	noise	and	artifact	are	
projected,	or	regressed	out	of	the	data.	This	strategy	can	only	work	if	interference	and	
target	live	within	distinct	subspaces,	which	requires	that	there	be	enough	dimensions	to	
start	with.	In	general,	P	distinct	and	uncorrelated	noise	sources	span	a	subspace	of	
dimension	P,	and	for	there	to	exist	a	subspace	orthogonal	to	it	containing	activity	of	
interest	we	must	have	N>P.	Moreover,	if	there	are	Q	distinct	sources	of	interest,	we	must	
have	N>=P+Q	As	a	rule	of	thumb:	the	greater	the	dimensionality	of	the	data	the	better.	
The	more	electrodes,	sensors,	etc.,	the	more	interference	sources	can	be	projected	out,	
and	the	more	sources	of	interest	can	be	resolved.	
There	are	two	caveats	to	this	rule.	One	is	the	presence	of	sensor-specific	noise	
(uncorrelated	with	other	sensors),	such	that	the	space	spanned	by	N	electrode	signals	
already	contains	N	noise	sources.	That	being	the	case,	other	sources	can	only	be	resolved	
approximately.	The	maximum	number	of	sources	that	can	be	isolated	depends	on	the	
"noise	floor"	determined	by	sensor-specific	noise,	so	that	once	that	number	is	reached	
adding	more	sensors	will	not	be	useful.	The	second	caveat	is	that	many	methods	involve	
parameters	(such	as	regression	coefficients)	that	must	be	learned	from	the	data.	The	
higher	the	dimensionality	the	greater	the	risk	of	overfitting.	This	too	may	impose	a	
practical	limit	on	the	number	of	additional	sensor	channels	to	consider.	
The	number	of	dimensions	of	N-channel	data	is	at	most	N,	but	it	can	be	smaller	in	
particular	if	each	channel	contains	fewer	than	N	samples	of	data.	For	M	samples	the	
dimensionality	is	the	smaller	of	M	and	N.		Serial	correlations	within	the	data	(for	
example	if	it	is	low-pass	filtered)	may	cause	the	effective	dimensionality	to	be	yet	
smaller.	In	general,	signals	that	have	high	serial	correlation	tend	to	behave	as	if	they	
were	shorter,	and	have	fewer	degrees	of	freedom,	than	their	number	of	samples	would	
suggest.	

4.2	Preprocessing	approaches	

4.2.1	Denoise	or	discount?	
Corruption	by	noise	or	artifact	cause	the	data	to	be	less	reliable	than	if	they	were	intact.	
Denoising	involves	processing	to	remove	or	attenuate	the	noise,	whereas	discounting	
involves	marking	invalid	portions	so	that	they	do	not	influence	the	outcome	of	
processing.		For	example,	if	an	electrode	is	detached	or	has	poor	contact,	its	data	may	be	
completely	unreliable,	or	if	a	strong	electrical	glitch	affected	all	channels	during	a	time	
interval,	data	values	corresponding	to	that	interval	may	need	to	be	discounted.	
Discounting	may	be	associated	with	interpolation	to	restore	the	semblance	that	the	data	
are	complete.	It	is	important	to	realize	that	interpolation	does	not	restitute	the	
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information	that	was	lost	by	masking	by	the	artifact	and/or	discounting.	Interpolation	is	
convenient	because	standard	processing	algorithms	to	be	used,	but	it	may	invalidate	
statistical	analysis	by	reducing	the	amount	of	variance	and/or	the	degrees	of	freedom	in	
the	data.	For	example,	interpolating	a	missing	channel	as	a	weighted	sum	of	its	
neighbors	reduces	data	dimensionality	by	1.	

4.2.2	Fourier	filtering	
Noise	and	signal	may	have	different	spectral	characteristics.	For	example,	power-line	
noise	is	usually	concentrated	at	50	Hz	(or	60Hz)	and	its	harmonics,	alpha	activity	is	
usually	concentrated	in	the	8-12	Hz	region,	and	electrode	drift	is	mainly	restricted	to	
very	low	frequencies.		

Filters	are	perhaps	the	most	commonly	used	tool	in	our	panoply.	In	addition	to	the	anti-
aliasing	low-pass	filter	in	hardware	that	precedes	analogue-to-digital	conversion,	it	is	
common	to	use	a	high	pass	filter	(with	cutoff	frequency	typically	in	the	0.1	Hz	to	1	Hz	
range)	to	attenuate	drift,	and	possibly	a	notch	filter	at	the	line	frequency,	or	a	low-pass	
filter	(for	example	at	20	or	30Hz)	to	attenuate	higher	components	judged	non-
informative	and	improve	the	smoothness	of	waveform	plots.	

Fourier	filtering	is	extremely	useful	but	entails	several	risks.	An	obvious	concern	is	that	
the	signal	may	extend	to	the	region	suppressed	by	the	filter,	and	thus	be	distorted.	This	
is	best	understood	by	noting	that	filtering	involves	convolution	of	the	waveform	by	the	
impulse	response	of	the	filter,	so	that	each	sample	of	the	filtered	signal	is	a	weighted	
sum	of	several	samples	of	the	original	signal.	The	new	sample	thus	reflects	events	within	
an	extended	time	interval,	and	the	temporal	relation	between	the	filtered	waveform	and	
events	in	the	brain	is	thus	blurred,	which	may	be	a	problem	when	making	inferences	
about	the	latency	of	a	brain	response	relative	to	a	stimulus,	or	the	causal	relations	
between	events.		Furthermore,	if	the	filter's	transfer	function	is	narrow	or	has	a	sharp	
transition,	its	response	to	a	transient	event	may	be	oscillatory	(ringing)	possibly	leading	
to	incorrect	conclusions	concerning	the	oscillatory	nature	of	brain	activity.		High-pass	
filtering	may	convert	a	unipolar	pulse	into	a	multiphasic	response,	the	positive	and	
negative	deflections	of	which	are	purely	artifactual	(i.e.	reflecting	only	properties	of	the	
filter).		The	span	of	such	temporal	distortion	equals	the	length	of	the	filter's	impulse	
response,	and	is	generally	more	marked	as	the	filter	is	spectrally	narrow	or	sharp.	

For	these	reasons,	it	is	common	to	consider	alternatives	to	Fourier	filtering	as	described	
below.	

4.2.3	Spatial	filtering	
Noise	and	signal	may	likewise	have	different	spatial	characteristics.	Spatial	filtering	
consists	in	replacing	the	signal	on	each	channel	by	a	weighted	sum	of	signals	on	all	other	
channels.	With	appropriate	weights,	spatial	filtering	can	attenuate	or	suppress	the	
contribution	of	one	or	several	noise	sources.		Weights	can	be	predetermined,	or	else	
derived	automatically	based	on	a	data-driven	algorithm.	Linear	spatial	filtering	is	a	
powerful	tool	that	makes	full	use	of	the	multidimensional	nature	of	data	provided	by	
EEG	electrode	arrays.	

Examples	of	predetermined	spatial	filtering	are	rereferencing,	where	the	signal	from	a	
particular	electrode	(for	example	mastoid),	or	the	mean	signal	over	electrodes,	is	
subtracted	from	the	signals	of	all	electrodes,	or	a	Laplacian	filter,	where	the	mean	of	the	
nearest	neighbors	is	subtracted	from	each	electrode.		Examples	of	data-driven	filtering	
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are	the	filters	determined	by	component-analysis	techniques	such	as	ICA	or	
beamforming.		

By	extension,	suppression	of	a	reference	signal	(for	example	ECG	or	EOG)	by	regression	
on	the	data	can	be	assimilated	to	a	form	of	spatial	filtering	(the	reference	signal	being	
treated	as	one	particular	spatial	channel).		A	spatial	filter	can	be	understood	as	a	linear	
transform	in	the	space	spanned	by	the	sensor	signals.	A	filter	that	suppresses	a	noise	
source	can	be	understood	as	defining	a	projection	on	the	subspace	orthogonal	to	that	
noise	source.		

More	on	the	design	of	optimal	spatial	filters	below.	

4.2.3	Detrending	
Particularly	troublesome	is	the	"drift"	that	arises	at	the	electrode-skin	interface,	a	slowly	
varying	potential	that	shifts	the	"baseline"	potential	on	each	EEG	electrode.		It	interferes	
with	the	analysis	of	slow	potentials	in	the	brain,	and	is	a	primary	motivation	for	applying	
high-pass	filtering	to	EEG.		High-pass	filtering	with	a	low-frequency	cutoff	(typically	0.1	
to	1	Hz)	requires	a	long	impulse	response,	potentially	leading	to	extensive	filter-induced	
distortions.		Electrode	drift	is	usually	uncorrelated	between	electrodes,	and	thus	is	not	
amenable	to	spatial	filtering	techniques.	Furthermore,	the	strong	serial	correlation	
reduces	the	degrees	of	freedom,	promoting	overfitting.	

An	alternative	to	high-pass	filtering	is	detrending,	in	which	a	slowly-varying	function	
(for	example	a	linear	ramp	or	low-order	polynomial)	is	fit	to	the	data,	and	then	
subtracted.	Each	sample	of	the	detrended	data	is	now	function	of	all	the	data,	raising	
concerns	similar	to	those	raised	for	filtering,	but	the	constraint	of	a	low-order	fit	limits	
the	impact	of	waveform	distortion.		

In	the	presence	of	temporally-local	glitches	(for	example	electrode	motion	artifacts)	
detrending	suffers	a	similar	problem	as	met	in	high-pass	filtering	where	a	glitch	can	
cause	ringing	of	the	filter.	The	fit	is	affected	by	the	glitch,	causing	the	trend	to	be	
imperfectly	removed	on	the	non-glitch	portions,	and	in	some	situations,	a	trend	can	be	
introduced	where	none	was	present	initially.	A	solution	is	robust	detrending,	in	which	
samples	too	distant	from	the	fit	are	simply	discounted,	so	that	the	fit	depends	only	on	
the	non-glitch	parts.	The	glitch	itself	is	then	addressed	by	other	means	(see	below).	
Similar	processing	is	harder	to	implement	in	a	high-pass	filter,	so	robust	detrending	is	a	
tool	of	choice	to	address	electrode	drift.	

4.2.4	Sensor	noise	suppression	
Sources	that	impinge	on	several	sensors	can	be	suppressed	by	forming	a	linear	
combination	with	appropriate	coefficients	so	that	they	cancel	out.	This	is	what	
techniques	such	as	ICA	or	beamforming	achieve.		A	source	that	impinges	on	a	single	
sensor	or	electrode	(for	example	a	local	muscle	artifact,	or	electrode-skin	noise	that	was	
not	suppressed	by	detrending)	cannot	be	suppressed	in	this	way.	The	only	way	to	
suppress	that	noise	is	to	discard	the	channel,	which	is	of	course	wasteful.		

In	other	words,	the	added	dimension	that	the	channel	offers	to	the	EEG	representation	is	
squandered	by	its	own	noise,	and	if	all	channels	carry	such	noise,	then	it	is	impossible	to	
obtain	a	clean	subspace	by	linear	projection.		This	noise	floor	imposes	a	hard	limit	on	
our	ability	to	extract	weak	brain	activity	from	EEG.	Without	that	channel-specific	noise	
floor,	we	could	partition	the	data	into	as	many	orthogonal	subspaces	as	there	are	
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sensors,	thus	improving	our	chances	of	isolating	activity	of	interest,	however	weak.		
With	the	noise	floor,	most	analyses	yield	much	fewer	exploitable	dimensions	than	
sensors.		Dealing	with	channel-specific	noise	is	thus	essential.	

This	issue	is	of	prime	importance	within	the	COCOHA	project,	because	usability	
constraints	will	likely	impose	a	small	number	of	channels,	possibly	with	dry	electrodes,	
and	there	may	be	additional	artifacts	due	to	movements.		Building	on	our	Sensor	Noise	
Suppression	algorithm	(SNS)	(de	Cheveigné	and	Simon	2008)	we	developed	the	Sparse	
Time	Artifact	Removal	algorithm	(STAR)	(de	Cheveigné	2016)	that	identifies	channel-
specific	glitches	and	interpolates	them	from	the	intact	channels.		Whereas	the	previous	
SNS	algorithm	applied	a	single	linear	transform	to	all	the	data	to	suppress	noise,	STAR	
applies	a	distinct	linear	transform	restricted	to	the	corrupted	segments	of	each	channel,	
maintaining	the	full	dimensionality	of	the	data.		Work	is	ongoing	to	lift	current	limits	on	
the	applicability	of	the	algorithm	(currently	it	cannot	handle	the	case	where	glitches	
occur	simultaneously	on	several	channels.		

4.2.4	Optimal	data-driven	spatial	filters	
Linear	spatial	filtering	allows	the	data	to	be	projected	into	the	null	subspace	of	noise	and	
artifacts.	The	signal-to-noise	ratio	(SNR)	improvement	is	potentially	very	large,	limited	
only	by	the	noise	floor	imposed	by	irreducible	channel-specific	noise	(see	above).	
However	this	outcome	depends	crucially	on	the	choice	of	the	filter	weights:	a	slight	error	
in	weights	can	allow	noise	components	to	leak	into	the	cleaned	signal.	

A	data-driven	solution	can	be	automatically	tuned	to	the	particular	artifacts	present	in	
the	data,	and	thus	is	potentially	of	better	quality	than	a	solution	based	on	prior	
knowledge,	particularly	as	the	geometry	of	artifact	sources	and	the	properties	of	the	
propagation	milieu	may	not	be	well	known.	The	downside	is	that	the	solution	may	be	
prone	to	overfitting,	which	occurs	if	there	is	a	mismatch	between	the	structure	of	the	
data	used	to	tune	the	filter,	and	the	data	to	which	it	is	applied.	

There	are	many	data-driven	approaches	to	finding	spatial	coefficients.		The	well-known	
Principal	Component	Analysis	(PCA)	is	sometimes	proposed	for	denoising.	Its	
effectiveness	in	that	role	is	limited,	but	it	serves	as	an	important	ingredient	in	other	
methods.	Independent	Component	Analysis	(ICA)	allows	data	to	be	transformed	into	a	set	
of	components	that	are	not	only	uncorrelated,	but	also	statistically	independent	
according	to	some	measure	of	independence.		Measures	of	independence	fall	in	three	
main	classes:	non-Gaussianity,	non-stationarity,	non-whiteness	(Cardoso	2001),	and	
countless	methods	have	been	proposed	that	exploit	various	variants	of	these	measures	
(Choi	et	al	2005;	Parra	et	al	2005;	Hyvarinen	2012).		Many	of	these	have	been	applied	to	
EEG	analysis	and	BCI	applications	(e.g.	Cichocki,	A.	2004;	Delorme	et	al	2007,	2012	
Nicola-Alonzo	2012).		ICA	produces	a	set	of	"independent"	components	which	are	then	
sorted	(manually	or	by	an	automatic	procedure)	into	noise	and	target	categories.		ICA	is	
often	successful	and	often	used	as	a	preprocessing	tool.		Downsides	are	(a)	there	is	not	a	
single	authoritative	algorithm	but	rather	a	wide	range	of	methods,	(b)	several	methods	
are	stochastic	and	do	not	produce	the	same	result	on	every	trial,	(c)	computational	costs,	
(d)	the	need	for	post-hoc	component	selection.	

Beamforming	finds	a	filter	that	minimizes	power	from	all	sources	except	those	from	a	
particular	target	direction,	defined	by	its	lead	matrix.	Beamforming	has	a	long	history	
first	in	radio	antenna	array	processing,	then	in	microphone	array	processing	(e.g.	
Benesty	2007),	and	is	a	well-developed	technique	in	brain	signal	processing	(e.g.	
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Sekihara	et	al	2006;	Grosse-Wenstrup	et	al	2009).	While	data-driven,	the	method	
requires	knowledge	of	the	lead	matrix	of	the	desired	sources.	Classically	this	is	obtained	
from	geometrical	knowledge,	but	it	can	also	be	derived	from	other	sources.	

Common	Spatial	Patterns	(CSP)	is	a	powerful	method	commonly	used	in	the	BCI	
community,	but	strangely	less	in	the	EEG	and	brain	imaging	community.		CSP	finds	a	
linear	transform	of	the	data	that	maximizes	the	variance	ratio	between	two	intervals	
(Koles	et	al	1990;	Fukunaga	et	al	1970;	Bashashati	et	al	2007;	Nicola-Alonso	et	al	2012;	
Kawanabe	et	al	2014;	Samek	et	al	2014).		Our	work	has	contributed	to	extending	the	
applicability	of	this	method	in	the	wider	framework	of	Joint	Decorrelation	(JD)	or	
Denoising	Source	Separation	(DSS)	(de	Cheveigné	and	Simon	2008;	de	Cheveigné	et	al	
2010,	2012;	de	Cheveigné	and	Parra	2014).	This	has	been	applied	in	the	COCOHA	project	
to	optimize	the	extraction	of	oscillatory	components	such	as	alpha	that	are	a	useful	cue	
to	spatial	attention	(de	Cheveigné	and	Arzounian	2015).		

	A	word	of	warning:	data-driven	solutions	are	designed	to	optimize	a	criterion	(e.g.	
narrow-band	power),	and	may	appear	misleadingly	successful	in	that	respect	
(Kriegeskorte	et	al	2009).	When	judging	the	effectiveness	of	the	outcome	it	is	important	
to	use	appropriate	cross-validation	techniques.		This	is	related	to	the	issue	of	overfitting	
in	which	the	solution	is	tuned	to	the	training	data	but	not	generalizable	to	unseen	data.	

4.2.5	Time-varying	analysis	
As	stressed	above,	dimensionality	of	the	noise	subspace	(and/or	noise	floor	of	the	
remaining	signal	subspace)	sets	the	ultimate	limit	of	our	ability	to	isolate	weak	cortical	
activity.	Isolating	weak	activity	(by	suppressing	the	many	stronger	sources)	is	
paramount	to	our	application.	While	machine-learning	techniques	(e.g.	deep	networks)	
may	be	useful	to	optimally	exploit	the	available	noise-corrupted	data,	it	is	obvious	that	
radically	better	performance	can	be	expected	if	the	noise	is	removed.	

The	dimensionality	of	the	noise	space	is	determined	by	the	number	of	distinct	
(uncorrelated)	noise	sources	that	are	active	within	the	analysis	interval.		However,	the	
activity	of	many	sources	is	temporally	sparse,	and	so	we	can	expect	noise	dimensionality	
to	be	smaller	if	analysis	is	conducted	on	shorter	intervals.		This	idea	is	exploited	by	the	
STAR	algorithm	(de	Cheveigné	2016)	to	suppress	channel-specific	sources	of	noise	
without	reducing	dimensionality	(as	would	occur	with	e.g.	ICA,	JD	or	beamforming).		

The	thrust	of	our	efforts	in	the	COCOHA	project	is	devoted	to	extending	these	ideas.	We	
believe	that	smart	time-varying	analysis	is	the	ultimate	frontier	towards	a	robust	and	
reliable	decoding	device.	

4.3	Online	real-time	preprocessing	
Most	algorithms	(e.g.	ICA,	beamforming,	JD,	etc.)	are	formulated	for	batch	processing,	
which	is	not	useful	in	a	device	that	must	produce	a	control	signal	in	real	time.	It	is	
essential	that	the	algorithms	that	we	propose	be	realizable	in	real	time.	This	constraint	
should	not	be	imposed	in	the	algorithm	development	phase,	because	it	would	slow	the	
development	of	new	ideas,	but	it	remains	a	preoccupation.	Fortunately	most	algorithms	
take	as	their	starting	point	the	covariance	matrix	of	the	data	(possibly	augmented	with	a	
range	of	time	shifts),	which	is	the	mean	over	time	of	the	cross-products	between	
channels,	which	can	be	calculated	according	to	a	time-varying	schedule	and	updated	in	
real	time.	Real-time	processing	is	supported	by	the	COCOHA	toolbox.	
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4.4	Toolboxes	for	preprocessing	
Many	preprocessing	methods	are	implemented	in	publicly	available	software	toolboxes	
(in	Python,		Matlab	or	C++).	We	maintain	the	NoiseTools	toolbox	
(http://audition.ens.fr/adc/NoiseTools/)	which	offers	general	preprocessing	tools,	and	
the	COCOHA	toolbox	(soon	to	be	made	public)	oriented	to	brain	decoding.	

Many	other	toolboxes	are	available,	including	EEGLab	(https://sccn.ucsd.edu/eeglab/),	
FieldTrip	(http://www.fieldtriptoolbox.org/),	SPM	(http://www.fil.ion.ucl.ac.uk/spm/),	
BrainStorm	(http://neuroimage.usc.edu/brainstorm/),	Biosig	
(http://biosig.sourceforge.net),	NutMEG	(http://www.nitrc.org/projects/nutmeg/),	
MNE	(http://martinos.org/mne/stable/index.html),	OpenMEEG	
(http://openmeeg.github.io),	SciKit	(http://scikit-learn.org/stable/).	

Some	resources	for	realtime	processing	include:	OpenEEG	
(http://openeeg.sourceforge.net/doc/),	OpenVibe	(http://openvibe.inria.fr),	PureData	
(https://puredata.info),	EEGSynth	(https://github.com/eegsynth/eegsynth).	

Summary	
Electrical	signals	recorded	by	EEG	electrodes	are	extremely	noisy,	and	this	is	a	major	
obstacle	for	deriving	robust	and	timely	control	signals.	Preprocessing	is	necessary	to	
remove	and/or	discount	the	noise	and	artifacts.	Preprocessing	is	a	major	thrust	of	the	
efforts	within	the	COCOHA	project	to	design	a	brain-controlled	hearing	aid	device	that	
can	well	enough	to	really	help	people	who	need	it.		

	

	

References	
Bashashati,	A.,	Fatourechi,	M.,	Ward,	R.	K.,	&	Birch,	G.	E.	(2007).	A	survey	of	signal	processing	

algorithms	in	brain–computer	interfaces	based	on	electrical	brain	signals.	Journal	of	
Neural	Engineering,	4(2),	R32–R57.	Retrieved	from	http://stacks.iop.org/1741-
2552/4/i=2/a=R03?key=crossref.cdbb14e4d6a8a03f7c5a86bc262cb3a9	

Benesty,	J.,	Chen,	J.,	Huang,	Y.,	&	Dmochowski,	J.	(2007).	On	Microphone-Array	Beamforming	
From	a	MIMO	Acoustic	Signal	Processing	Perspective.	IEEE	Transactions	on	Audio,	Speech,	
and	Language	Processing,	15(3),	1053–1065.	Retrieved	from	
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4100665	

Bertrand,	A	(2011)	"Applications	and	trends	in	wireless	acoustic	sensor	networks:	a	signal	
processing	perspective"	Proc.	of	the	IEEE	Symposium	on	Communications	and	Vehicular	
Technology	(SCVT)		

Choi,	S.,	Cichocki,	A.,	Park,	H.-M.,	&	Lee,	S.-Y.	(2005).	Blind	Source	Separation	and	Independent	
Component	Analysis:	A	Review.	Neural	Information	Processing	-	Letters	and	Reviews,	6,	1–
57.	Retrieved	from	papers2://publication/uuid/CC1F69E9-3AD0-4D03-B15B-
DE37A5239D8C	

Cichocki,	A.	(2004).	Blind	signal	processing	methods	for	analyzing	multichannel	brain	signals.	
International	Journal	of	Bioelectromagnetism,	6(1).	Retrieved	from	
papers2://publication/uuid/A49A2C45-5802-4B7E-8F26-0D9F37769471	

D.Y.	Levin,	E.A.P.	Habets	and	S.	Gannot	(2015)	On	the	average	directivity	factor	attainable	with	a	
beamformer	incorporating	null	constraints,	IEEE	Signal	Processing	Letters,	Vol.	22,	No.	11,	
pp.	2122-2126.	

de	Cheveigné,	A.	(2010).	Time-shift	denoising	source	separation.	Journal	of	Neuroscience	
Methods,	189(1),	113–120.	Retrieved	from	
http://linkinghub.elsevier.com/retrieve/pii/S0165027010001202	



	 13	

de	Cheveigné,	A.	(2012).	Quadratic	component	analysis.	NeuroImage,	59(4),	3838–3844.	
Retrieved	from	http://linkinghub.elsevier.com/retrieve/pii/S1053811911012560	

de	Cheveigné,	A.	(2016).	Sparse	time	artifact	removal.	Journal	of	Neuroscience	Methods,	262,	
14–20.	Retrieved	from	http://dx.doi.org/10.1016/j.jneumeth.2016.01.005	

de	Cheveigné,	A.,	&	Arzounian,	D.	(2015).	Scanning	for	oscillations.	Journal	of	Neural	
Engineering,	12(6),	66020.	Retrieved	from	http://adsabs.harvard.edu/cgi-bin/nph-
data_query?bibcode=2015JNEng..12f6020D&link_type=EJOURNAL	

de	Cheveigné,	A.,	&	Parra,	L.	C.	(2014).	Joint	decorrelation,	a	versatile	tool	for	multichannel	data	
analysis.	NeuroImage,	98,	487–505.	Retrieved	from	
http://linkinghub.elsevier.com/retrieve/pii/S1053811914004534	

de	Cheveigné,	A.,	&	Simon,	J.	Z.	(2008).	Denoising	based	on	spatial	filtering.	Journal	of	
Neuroscience	Methods,	171(2),	331–339.	Retrieved	from	
http://linkinghub.elsevier.com/retrieve/pii/S0165027008002008	

de	Cheveigné,	A.,	&	Simon,	J.	Z.	(2008).	Sensor	noise	suppression.	Journal	of	Neuroscience	
Methods,	168(1),	195–202.	Retrieved	from	
http://linkinghub.elsevier.com/retrieve/pii/S0165027007004621	

Delorme,	A.,	Palmer,	J.,	Onton,	J.,	Oostenveld,	R.,	&	Makeig,	S.	(2012).	Independent	EEG	sources	
are	dipolar.	PLoS	ONE,	7(2),	e30135.	Retrieved	from	
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22355308&r
etmode=ref&cmd=prlinks	

Delorme,	A.,	Sejnowski,	T.,	&	Makeig,	S.	(2007).	Enhanced	detection	of	artifacts	in	EEG	data	using	
higher-order	statistics	and	independent	component	analysis.	NeuroImage,	34(4),	1443–
1449.	Retrieved	from	http://linkinghub.elsevier.com/retrieve/pii/S1053811906011098	

F.	Lotte,	M.	Congedo,	A.	Lécuyer,	F.	Lamarche,	B.	Arnaldi,	"A	Review	of	Classification	Algorithms	
for	EEG-based	Brain-Computer	Interfaces",	Journal	of	Neural	Engineering,	4,	R1-R13,	2007.	

Fatourechi	M,	Bashashati	A,	Ward	RK,	Birch	GE	(2007)	EMG	and	EOG	arti-	facts	in	brain	
computer	interface	systems:	A	survey.	Clinical	Neurophysiol-	ogy	118:480–494.		

Fukunaga,	K.,	&	Koontz,	W.	L.	G.	(1970).	Application	of	the	Karhunen-Loeve	expansion	to	feature	
selection	and	ordering.	Computers,	IEEE	Transactions	on,	C-19(4),	311–318.	Retrieved	
from	http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1671511	

Goncharova	II,	McFarland	DJ,	Vaughan	TM,	Wolpaw	JR	(2003)	EMG	contami-	nation	of	EEG:	
spectral	and	topographical	characteristics.	Clinical	Neurophys-	iology	114:1580–1593.		

Grosse-Wentrup,	M.,	Liefhold,	C.,	Gramann,	K.,	&	Buss,	M.	(2009).	Beamforming	in	noninvasive	
brain-computer	interfaces.	Biomedical	Engineering,	IEEE	Transactions	on,	56(4),	1209–
1219.		

Herculano-Houzel,	S.	The	remarkable,	yet	not	extraordinary,	human	brain	as	a	scaled-up	primate	
brain	and	its	associated	cost},	Proc	Nat	Acad	Sci	109,	Supplement	1,		10661-10668.	

Hokajärvi	I.A.	Master’s	Thesis.	Tampere	University	of	Technology;	Tampere,	Finland:	2012.	
Electrode	Contact	Impedance	and	Biopotential	Signal	Quality.	

Huigen,	E.;	Peper,	A.;	Grimbergen,	C.A.	Investigation	into	the	origin	of	the	noise	of	surface	
electrodes.	Med.	Biol.	Eng.	Comput.	2002,	40,	332–338.	

Hyvarinen,	A.	(2012).	Independent	component	analysis:	recent	advances.	Philosophical	
Transactions	of	the	Royal	Society	A:	Mathematical,	Physical	and	Engineering	Sciences,	
371(1984),	20110534.	Retrieved	from	
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2011.0534	

J	Benesty,	J	Chen,	Y	Huang,	J	Dmochowski		(2007)	On	microphone-array	beamforming	from	a	
MIMO	acoustic	signal	processing	perspective,	Audio,	Speech,	and	Language	Processing,	
IEEE	Transactions	on	15	(3),	1053-1065	

J.	Wolpaw	and	E.	Wolpaw,	Brain-computer	interfaces:	principles	and	practice.	Oxford	University	
Press,	2012		

Kawanabe,	M.,	Samek,	W.,	Müller,	K.-R.,	&	Vidaurre,	C.	(2014).	Robust	Common	Spatial	Filters	
with	a	Maxmin	Approach.	Neural	Computation,	26(2),	349–376.	Retrieved	from	
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00544	



	 14	

Kidd,	G.,	Favrot,	S.,	Desloge,	J.	G.,	Streeter,	T.	M.,	&	Mason,	C.	R.	(2013).	Design	and	preliminary	
testing	of	a	visually	guided	hearing	aid.	The	Journal	of	the	Acoustical	Society	of	America,	
133(3),	EL202.	Retrieved	from	
http://scitation.aip.org/content/asa/journal/jasa/133/3/10.1121/1.4791710	

Koles,	Z.	J.,	Lazar,	M.	S.,	&	Zhou,	S.	Z.	(1990).	Spatial	patterns	underlying	population	differences	in	
the	background	EEG.	Brain	Topography,	2(4),	275–284.	Retrieved	from	
http://www.springerlink.com/index/L378X271583V34P7.pdf	

Kriegeskorte,	N.,	Simmons,	W.	K.,	Bellgowan,	P.	S.	F.,	&	Baker,	C.	I.	(2009).	Circular	analysis	in	
systems	neuroscience:	the	dangers	of	double	dipping.	Nature	Neuroscience,	12(5),	535–
540.	Retrieved	from	http://www.nature.com/doifinder/10.1038/nn.2303	

Ma	J,	Tao	P,	Bayram	S,	Svetnik	V	(2012)	Muscle	artifacts	in	multichannel	EEG:	characteristics	and	
reduction.	Clinical	Neurophysiology	123:1676–1686.		

Nicolas-Alonso,	L.	F.,	&	Gomez-Gil,	J.	(2012).	Brain	Computer	Interfaces,	a	Review.	Sensors,	
12(12),	1211–1279.	Retrieved	from	http://www.mdpi.com/1424-8220/12/2/1211/	

Parra,	L.	C.,	Spence,	C.	D.,	Gerson,	A.	D.,	&	Sajda,	P.	(2005).	Recipes	for	the	linear	analysis	of	EEG.	
NeuroImage,	28(2),	326–341.	Retrieved	from	
http://linkinghub.elsevier.com/retrieve/pii/S1053811905003381	

Samek,	W.,	Kawanabe,	M.,	&	Muller,	K.	R.	(2014).	Divergence-based	framework	for	common	
spatial	patterns	algorithms.	IEEE	Reviews	in	Biomedical	Engineering,	7,	50–72.	
http://doi.org/10.1109/RBME.2013.2290621	

Sekihara,	K.,	Hild,	K.	E.,	&	Nagarajan,	S.	S.	(2006).	A	novel	adaptive	beamformer	for	MEG	source	
reconstruction	effective	when	large	background	brain	activities	exist.	IEEE	Transactions	
on	Bio-Medical	Engineering,	53,	1755–1764.	Retrieved	from	
papers2://publication/uuid/A2E55AF8-0083-426E-807B-625ABB179FA6	

Whitham	EM,	Pope	KJ,	Fitzgibbon	SP,	Lewis	T,	Clark	CR,	Loveless	S,	Broberg	M,	Wallace	A,	
DeLosAngeles	D,	Lillie	P,	Hardy	A,	Fronsko	R,	Pulbrook	A,	Willoughby	JO	(2007)	Scalp	
electrical	recording	during	paralysis:	quantitative	evidence	that	EEG	frequencies	above	20	
Hz	are	contaminated	by	EMG.	Clinical	Neurophysiology	118:1877–1888.		


