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This document provides an overview of preprocessing techniques for audio signals to be
matched with EEG signals for the purpose of hearing aid control. It is part of Deliverable
D2.2 of the COCOHA project, funded by the H2020 ICT programme of the European
Union under grant number 644732. The COCOHA project aims to help hearing impaired
persons so that they can deal with challenging noisy environments, by providing them
with the means to steer a sophisticated hearing aid with signals derived directly from
the brain. This document is available at https://cocoha.org/cocoha-reports/.

Executive summary

1.

COCOHA aims allow the user of a hearing aid to control acoustic processing (e.g.
microphone arrays) so as to isolate one target source among many for
amplification. This is done using of signals recorded from the brain using EEG.

A prominent control strategy is to correlate each audio stream with EEG signals
measured from the brain, choosing for amplification that stream which yields the
highest correlation.

This strategy requires that the audio signal be preprocessed into a representation
that can be usefully correlated with the EEG, as the raw audio and EEG signals
occupy different frequency regions and cannot be directly compared. The aim of
preprocessing is to derive from the audio a quantity predictive of the EEG
response.

Two variants are used: the forward model in which EEG signals are predicted
from the stimulus representation (so-called temporal response function, TRF,
models), and the backward model in which the stimulus representation is
inferred from the EEG (so-called stimulus reconstruction models). A third
approach, deployed in COCOHA, uses canonical correlation analysis to transform
both audio and EEG so as to maximize correlation.

A wide range of preprocessing schemes have been proposed, from low level
features (such as waveform envelope and spectrogram) to higher level features
(cortical model, modulation spectrum) and symbolic representations.
Pioneering studies used the simplest representations (waveform envelope and
spectrogram) which are still remarkably effective.

Recent studies investigate more sophisticated representations (cochlear and
cortical models, MFCC, or symbolic representations). These provide a benefit that
can be significant, but usually small.

The most promising direction involves combining features to obtain a more
reliable predictor of EEG signals (and thus more reliable classification), and
switching between models according to their validity.

The COCOHA project is investigating these directions.



1. The COCOHA context

The COCOHA project (http://cocoha.org/) funded by the EU H2020 initiative aims at
developing a "smart" hearing aid that puts acoustic processing under direct control of
the user's brain, using signals recorded by electroencephalography (EEG) or other
means. Such a device should enable a hearing-impaired listener to attend to one
particular sound source (for example a person speaking) and ignore competing voices
and sounds. Our intact auditory is adept at performing such a task, usually without our
noticing, but this ability is greatly reduced by impairment. The COCOHA project aims to
restore this ability by artificial means.

Processing techniques to analyze complex acoustic scenes, separate sources, and
improve intelligibility are reviewed in the COCOHA Report on Acoustic Signal Processing
for Hearing Aids (https://cocohablog.files.wordpress.com/2017/01/acoustical-signal-
processing-v4.pdf). The present document deals with a different task: preprocessing
acoustic signals to allow comparison with brain signals, so as to allow the hearing aid to
select which particular sound stream the user wishes to attend to.

2. Cognitive control strategies
Within COCOHA we consider several strategies to control a hearing aid based on brain
signals. These are:

e Correlation of brain signals and acoustic signals. Each available audio stream is
correlated with EEG signals and the stream that yields the best correlation is
selected for amplification.

e Decoding cues to spatial attention attention and inattention. The spatial focus of
attention is decoded from the EEG signal and audio streams that match that
position are selected for amplification.

e Exploiting hybrid control cues (head and eye position, haptic control, etc.
together with EEG). EEG signals are used to complement other control modalities.

The first strategy is mainly investigated within the project, but we remain open to every
possibility to combine it with other strategies to improve the applicability, ergonomy,
and performance of cognitive control.

3. Relating audio to EEG

Mainly two approaches have been used in the past: temporal response function (TRF) or
forward model, and stimulus reconstruction or backward model. The first approach
attempts to predict EEG responses based on the audio, using an audio-to-EEG forward
model fit to the data. The second approach aims to infer the audio from the EEG based
on a backward model. Forward and backward approaches are usually based on the
same linear model that is "learned" from the data.

In addition to these two classic approaches, a new approach based on Canonical
Correlation Analysis (CCA) have more recently been introduced. In this approach, audio
and EEG features are processed together, projecting both into a common space where
they can be compared.



4. The need for audio preprocessing

The audible frequency range extends from roughly 20 Hz to 20 kHz, whereas EEG signals
occupy a lower range, from 0.1 Hz or lower for very low frequency activity (Vanhatalo et
al 2005) to a few tens of Hz for gamma activity. At higher frequencies brain signals
measured by EEG are often weak due to low-pass characteristics of brain source-to-
electrode propagation and mixing, and dominated by muscle artifact or other sources of
noise (Yuval-Greenberg et al 2008; Whitham et al 2007). According to the Wiener-
Khinchine theorem the cross-correlation function and cross-spectrum are Fourier pairs:

Cey (1) = X(OY ()

which implies that the cross-correlation between signals is zero unless the spectra
overlap. The audio signal has a different spectral content from the EEG, and thus must be
preprocessed.

A simple form of preprocessing consists of simple demodulation of the acoustic signal to
derive a waveform envelope. More sophisticated preprocessing can involve
decomposition by a filterbank, or cepstral processing, auditory processing models (e.g.
cochlear or cortical models), higher-order signal processing models (e.g. modulation
filterbank or scattering transform), symbolic representations (phonemes, words, etc.) or
neural network activations. These approaches are reviewed in this document. The aim in
every case is the same: derive from the audio signal some quantity that is reliably
predictive of some aspect of measurable brain activity. Different parts of the brain may
care for different aspects of the signal: primary auditory cortex may care for low level
features (waveform envelope or spectrogram), whereas secondary regions may care for
linguistic information, or higher-order statistical structure of the acoustic waveform.

Progress is measured in terms of correlation values between speech and EEG, and
ultimately the score of classification algorithms that rely on these data. The need for
real-time processing within the device may impose additional constraints.

5. Audio preprocessing for EEG-audio decoding

5.1 Waveform envelope

The acoustic waveform spectrum content is usually too high to be commensurable with EEG,
but the envelope modulation spectrum of audio signals such as speech occupies a roughly
similar spectral range to EEG (Obleser et al 2012).
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Power spectra of audio, audio envelope and EEG in the low frequency region. The raw
audio signal has little power in the range where EEG power is concentrated, implying
poor correlation. The envelope of that signal has power in the same range as EEG.



The modulation spectrum, distinct from the acoustic spectrum, is an important feature
characteristic of speech and other sounds (Dau et al. 1997; Hermansky 2010; Jepsen et al.
2008; Lorenzi et al. 2001; Singh and Theunissen 2016; Xiang et al 2013). The envelope may
be derived from the waveform by applying the Hilbert transform, or merely by half-wave or
full-wave rectification followed by low-pass filtering.
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Waveform envelope calculated using various methods. Spectral properties are roughly
equivalent in the low-frequency range where EEG is concentrated.

The resulting envelope waveform may be submitted to a non-linear transform, typically
compressive power function (e.g. exponent 2/3) or logarithm. These details usually have a
minor effect on performance (Biesmans et al 2017).

Additional schemes have been proposed, for example the half-wave-rectified derivative of the
envelope signal (Sturm et al 2015). The rationale here is that brain responses tend to be
triggered by the onset of acoustic events. While attractive, this transform has not proved
superior to the envelope itself.

The majority of studies of audio/EEG decoding assume a waveform envelope representation
(e.g. Powers et al 2012;

5.2. Filter-bank

While the waveform envelope has been successful in early studies, it is a very crude
representation of the ongoing acoustic signal. Processing within the auditory system begins
with filtering within the cochlea, and thus a filter-bank representation (for example based on a
model of cochlear filtering) would seem more promising than the waveform envelope. The
filter-bank splits the acoustic signal into multiple channels, each of which can be processed
individually (by demodulation as above), to obtain a set of envelope signals with slow
variations commensurate with EEG. Envelopes from multiple channels then form a
multidimensional signal representative of the sound.

Nonetheless, the small number of demodulated filter channels constitute an impoverished
representation of the speech signal, although multichannel representations of this sort have
been shown to support a high level of intelligibility (Shannon et al 1995). Regardless, this
representation has some hope to better predict cortical responses than the waveform envelope.

The filterbank representation has been investigated in several decoding studies (Di Liberto
2015; Biesmans et al 2017; Martin et al 2014; Mesgarani and Chang 2012; Pasley et al 2012),
for both forward (TRF) and backward (reconstruction models). Reconstruction from invasive
measurements (ECoG) has met a surprising degree of success (e.g. Mesgarani and Chang
2012; Pasley et al 2012), but reconstruction from EEG or MEG is less successful. In contrast,



forward models benefit from the greater detail of spectrogram vs waveform envelope
representations ((Di Liberto 2015; Biesmans et al 2017).
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Left: cross-correlation coefficient between channels of an auditory spectrogram. The
filterbank was simulated in the frequency domain (FFT) with channel frequency
spacing and bandwidths calculated to simulate human peripheral selectivity, and
temporal resolution calculated to approximate human temporal resolution while
maintaining uniform alignment and resolution across frequency bands (~20ms) so that
the spectrogram is separable. Note the large values of correlation between most
channels. Right: relative power of each individual principal component of the
spectrogram.

Filterbank representations are contingent on type and parameters of the filterbank. These
include the bandwidth and shape of each filter, the density and distribution of centre
frequencies (CF), and the nature of the demodulation and eventual nonlinear scaling of the
outputs. Convolution by the filter impulse response entails temporal smoothing that is greater
for narrow filters. Many filterbanks are logarithmic (e.g. wavelet) or approximately
logarithmic (e.g. cochlear), with narrower filters at low CFs. The power of audio signals such
as speech is often correlated across frequency bands, leading to a high degree of correlation
between channels, such that the envelope of any band is not too different from the envelope of
the raw waveform.

Interestingly, filterbank representations are often summarized by averaging over frequency
dimension (Ding and Simon 2013), effectively producing a "broadband" envelope similar to
that discussed earlier.

5.3. Cortical model

Cochlear filtering is but the first stage of auditory processing. It captures well our sensitivity
to spectral features, but not the effects of temporal and spectral modulation, that are
presumably calculated at higher auditory stages such as the cortex. Such higher-order
processing stages have also been modeled, in particular cortical processing of spectral and
temporal modulation (Chi et al 2005), and some success has been reported in using them to
relate to brain responses, in particular invasive recordings (Pasley et al 2012).

5.4. Higher-order signal-processing models

Many schemes have been proposed to describe sound (e.g. Alias 2016). To the extent that
they are relevant to predict meaning or aspects of sound that determine the response of a
listener, they are all of potential use to predict the listener's brain response.

The Mel frequency cepstral coefficient (MFCC) is commonly used in Automatic Speech
Recognition (ASR). The MFCC captures well the overal shape of the spectrum, with
macroscopic features (e.g. spectral tilt) coded in the lowest coefficients and details (e.g.



harmonic structure) in the highest coefficients. MFCCs have been used as an alternative to a
spectrogram representation (Chakrabarti et al 2013; Chan et al 2014).

Several studies have postulated an intimate connection between the rhythmic structure of
speech (as captured by modulation spectral representations) and cortical rhythms (Ghitza
2011; Zoefel and Van Rullen 2016; Peelle et al 2012; Giraud and Poppel 2012), although the
well-groundedness of this hypothesis has been questioned (Cummins 2012; Obleser 2012).
Rhythmic structure on the (slow) scale of syllables or articulatory gestures can be
characterized directly from temporal variation of acoustic features (envelope, spectrogram) or
quantified more abstractly by higher-order modulation features, such as offered by certain
auditory models (e.g. Dau 1997; Jepsen et al 2008). Modulation features are captured by the
cortical model of Chi et al (2005) that has been applied to EEG/audio decoding (Pasley et al
2012).

Audio signals have structure on multiple scales, ranging from the short scale captured by
spectral representations to the scales characteristic of textures, or speech or musical structure
that may be characterized by methods such as the Scattering Transform (Andén et al 2015).
These models are of potential interest to the extent that cortical events may be triggered by
events within a complex hierarchical structure, in addition to the low-level patterns that have
been characterized in past studies. The potential of such models in the context of the
COCOHA application is that the richer representation that they offer they may lead to better
discrimination between attended and unattended streams.

5.5. Symbolic representations

In addition to low-level acoustic features characteristic of the waveform, speech may be
indexed with higher-level labels of phonemes (or phonemic traits), words, and so-on. Several
studies have shown that EEG responses can be related to these labels, leading to better
decoding performance than with acoustic features only (Di Liberto et al 2015; Di Liberto et al
2017; Tankus et al 2012; Mesgarani et al 2015; Khalighinejad et al 2017). This result is
drawn from studies where speech data with phonemic labels was available, but the same
information could in principle be extracted from the speech using an automatic speech
recognition system.

5.6. Multimodal representations

Most speech decoding studies assume that only the audio signal is available, but in
practial scenarios it is not unreasonable to assume that visual cues are available, at least
part of the time. They may even be crucially needed in noisy situations, if the listener is
impaired, or if the SNR of the desired source is initially too low to allow audio-based
decoding (the so-called "bootstrap problem" of a decoding-based control system).
Cortical responses to speech are indeed enhanced in the presence of visual cues (Zion
Golumbic et al 2013; Crosse et al 2015; Crosse et al 2016; Peelle et al 2015). In order to
benefit from these cues, an actual system would need to analyze the scene using
machine vision techniques for cues to visible events (e.g. speaker articulator
movements).

A useful feature of such higher-order, symbolic and multimodal representations is that
they may involve cortical sources (most likely from secondary areas) distinct from low
level features (most likely from primary areas). Distinct sources are likely to have
distinct spatial signatures that can be used to derive distinct discriminative dimensions
for decoding and control.



5.7. Deep Neural Networks

The most remarkable recent trend in information processing is the development of deep
learning techniques. These have been applied to EEG signal analysis (e.g. Stober et al
2016; Suckling et al 2015; Kwak et al 2017; Zheng & Lu 2015). DNNs do not yet seem to
have been applied to the task of extracting an EEG-predictive representation from audio
streams.

6. Combining representations

Different representations may tap different levels of processing. To the extent that they
come from spatially distinct sources (e.g. from different levels of the processing
hiearchy) they provide distinct and complementary discriminatory dimensions. A
general tool for combining distinct representations, extensively used within the COCOHA
project, is canonical correlation analysis (Hotelling 1936).

Summary

The COCOHA project aims to develop a hearing aid with sophisticated acoustic
processing under cognitive control. One strategy for control calls for the EEG signal from
the user to be correlated with each of the acoustic streams that can be isolated by the
acoustic processing module, so as to select one for amplification. For this to be
successful the audio must be preprocessed so as to isolate features most predictive of
the EEG evoked by an attended stream. A wide range of features is available, from low-
level envelope or spectrotemporal features, to high-level structural or symbolic
representations. Low-level features are implemented in the COCOHA toolbox, others are
under investigation.
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