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This	document	provides	an	overview	of	preprocessing	techniques	for	audio	signals	to	be	
matched	with	EEG	signals	for	the	purpose	of	hearing	aid	control.	It	is	part	of	Deliverable	
D2.2	of	the	COCOHA	project,	funded	by	the	H2020	ICT	programme	of	the	European	
Union	under	grant	number	644732.		The	COCOHA	project	aims	to	help	hearing	impaired	
persons	so	that	they	can	deal	with	challenging	noisy	environments,	by	providing	them	
with	the	means	to	steer	a	sophisticated	hearing	aid	with	signals	derived	directly	from	
the	brain.	This	document	is	available	at	https://cocoha.org/cocoha-reports/.	
	

Executive	summary	
1. COCOHA	aims	allow	the	user	of	a	hearing	aid	to	control	acoustic	processing	(e.g.	

microphone	arrays)	so	as	to	isolate	one	target	source	among	many	for	
amplification.	This	is	done	using	of	signals	recorded	from	the	brain	using	EEG.		

2. A	prominent	control	strategy	is	to	correlate	each	audio	stream	with	EEG	signals	
measured	from	the	brain,	choosing	for	amplification	that	stream	which	yields	the	
highest	correlation.		

3. This	strategy	requires	that	the	audio	signal	be	preprocessed	into	a	representation	
that	can	be	usefully	correlated	with	the	EEG,	as	the	raw	audio	and	EEG	signals	
occupy	different	frequency	regions	and	cannot	be	directly	compared.	The	aim	of	
preprocessing	is	to	derive	from	the	audio	a	quantity	predictive	of	the	EEG	
response.	

4. Two	variants	are	used:	the	forward	model	in	which	EEG	signals	are	predicted	
from	the	stimulus	representation	(so-called	temporal	response	function,	TRF,	
models),	and	the	backward	model	in	which	the	stimulus	representation	is	
inferred	from	the	EEG	(so-called	stimulus	reconstruction	models).	A	third	
approach,	deployed	in	COCOHA,	uses	canonical	correlation	analysis	to	transform	
both	audio	and	EEG	so	as	to	maximize	correlation.	

5. A	wide	range	of	preprocessing	schemes	have	been	proposed,	from	low	level	
features	(such	as	waveform	envelope	and	spectrogram)	to	higher	level	features	
(cortical	model,	modulation	spectrum)	and	symbolic	representations.	

6. Pioneering	studies	used	the	simplest	representations	(waveform	envelope	and	
spectrogram)	which	are	still	remarkably	effective.		

7. Recent	studies	investigate	more	sophisticated	representations	(cochlear	and	
cortical	models,	MFCC,	or	symbolic	representations).	These	provide	a	benefit	that	
can	be	significant,	but	usually	small.	

8. The	most	promising	direction	involves	combining	features	to	obtain	a	more	
reliable	predictor	of	EEG	signals	(and	thus	more	reliable	classification),	and	
switching	between	models	according	to	their	validity.	

9. The	COCOHA	project	is	investigating	these	directions.	
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1.	The	COCOHA	context	
The	COCOHA	project	(http://cocoha.org/)	funded	by	the	EU	H2020	initiative	aims	at	
developing	a	"smart"	hearing	aid	that	puts	acoustic	processing	under	direct	control	of	
the	user's	brain,	using	signals	recorded	by	electroencephalography	(EEG)	or	other	
means.	Such	a	device	should	enable	a	hearing-impaired	listener	to	attend	to	one	
particular	sound	source	(for	example	a	person	speaking)	and	ignore	competing	voices	
and	sounds.	Our	intact	auditory	is	adept	at	performing	such	a	task,	usually	without	our	
noticing,	but	this	ability	is	greatly	reduced	by	impairment.	The	COCOHA	project	aims	to	
restore	this	ability	by	artificial	means.		
Processing	techniques	to	analyze	complex	acoustic	scenes,	separate	sources,	and	
improve	intelligibility	are	reviewed	in	the	COCOHA	Report	on	Acoustic	Signal	Processing	
for	Hearing	Aids	(https://cocohablog.files.wordpress.com/2017/01/acoustical-signal-
processing-v4.pdf).	The	present	document	deals	with	a	different	task:	preprocessing	
acoustic	signals	to	allow	comparison	with	brain	signals,	so	as	to	allow	the	hearing	aid	to	
select	which	particular	sound	stream	the	user	wishes	to	attend	to.	

2.	Cognitive	control	strategies	
Within	COCOHA	we	consider	several	strategies	to	control	a	hearing	aid	based	on	brain	
signals.		These	are:	

• Correlation	of	brain	signals	and	acoustic	signals.	Each	available	audio	stream	is	
correlated	with	EEG	signals	and	the	stream	that	yields	the	best	correlation	is	
selected	for	amplification.		

• Decoding	cues	to	spatial	attention	attention	and	inattention.	The	spatial	focus	of	
attention	is	decoded	from	the	EEG	signal	and	audio	streams	that	match	that	
position	are	selected	for	amplification.	

• Exploiting	hybrid	control	cues	(head	and	eye	position,	haptic	control,	etc.	
together	with	EEG).	EEG	signals	are	used	to	complement	other	control	modalities.	

The	first	strategy	is	mainly	investigated	within	the	project,	but	we	remain	open	to	every	
possibility	to	combine	it	with	other	strategies	to	improve	the	applicability,	ergonomy,	
and	performance	of	cognitive	control.	

3.	Relating	audio	to	EEG	
Mainly	two	approaches	have	been	used	in	the	past:	temporal	response	function	(TRF)	or	
forward	model,	and	stimulus	reconstruction	or	backward	model.	The	first	approach	
attempts	to	predict	EEG	responses	based	on	the	audio,	using	an	audio-to-EEG	forward	
model	fit	to	the	data.	The	second	approach	aims	to	infer	the	audio	from	the	EEG	based	
on	a	backward	model.		Forward	and	backward	approaches	are	usually	based	on	the	
same	linear	model	that	is	"learned"	from	the	data.	
In	addition	to	these	two	classic	approaches,	a	new	approach	based	on	Canonical	
Correlation	Analysis	(CCA)	have	more	recently	been	introduced.		In	this	approach,	audio	
and	EEG	features	are	processed	together,	projecting	both	into	a	common	space	where	
they	can	be	compared.	
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4.	The	need	for	audio	preprocessing	
The	audible	frequency	range	extends	from	roughly	20	Hz	to	20	kHz,	whereas	EEG	signals	
occupy	a	lower	range,	from	0.1	Hz	or	lower	for	very	low	frequency	activity	(Vanhatalo	et	
al	2005)	to	a	few	tens	of	Hz	for	gamma	activity.	At	higher	frequencies	brain	signals	
measured	by	EEG	are	often	weak	due	to	low-pass	characteristics	of	brain	source-to-
electrode	propagation	and	mixing,	and	dominated	by	muscle	artifact	or	other	sources	of	
noise	(Yuval-Greenberg	et	al	2008;	Whitham	et	al	2007).	According	to	the	Wiener-
Khinchine	theorem	the	cross-correlation	function	and	cross-spectrum	are	Fourier	pairs:	

	 𝐶"#(𝜏) ⟺ 𝑋(𝑓)𝑌(𝑓)	

which	implies	that	the	cross-correlation	between	signals	is	zero	unless	the	spectra	
overlap.	The	audio	signal	has	a	different	spectral	content	from	the	EEG,	and	thus	must	be	
preprocessed.		
A	simple	form	of	preprocessing	consists	of	simple	demodulation	of	the	acoustic	signal	to	
derive	a	waveform	envelope.		More	sophisticated	preprocessing	can	involve	
decomposition	by	a	filterbank,	or	cepstral	processing,	auditory	processing	models	(e.g.	
cochlear	or	cortical	models),	higher-order	signal	processing	models	(e.g.	modulation	
filterbank	or	scattering	transform),	symbolic	representations	(phonemes,	words,	etc.)	or	
neural	network	activations.	These	approaches	are	reviewed	in	this	document.	The	aim	in	
every	case	is	the	same:	derive	from	the	audio	signal	some	quantity	that	is	reliably	
predictive	of	some	aspect	of	measurable	brain	activity.	Different	parts	of	the	brain	may	
care	for	different	aspects	of	the	signal:	primary	auditory	cortex	may	care	for	low	level	
features	(waveform	envelope	or	spectrogram),	whereas	secondary	regions	may	care	for	
linguistic	information,	or	higher-order	statistical	structure	of	the	acoustic	waveform.	
Progress	is	measured	in	terms	of	correlation	values	between	speech	and	EEG,	and	
ultimately	the	score	of	classification	algorithms	that	rely	on	these	data.	The	need	for	
real-time	processing	within	the	device	may	impose	additional	constraints.		

5.	Audio	preprocessing	for	EEG-audio	decoding	

5.1	Waveform	envelope	
The acoustic waveform spectrum content is usually too high to be commensurable with EEG, 
but the envelope	modulation	spectrum	of	audio	signals	such	as	speech	occupies	a	roughly	
similar	spectral	range	to	EEG	(Obleser	et	al	2012).		

 
Power spectra of audio, audio envelope and EEG in the low frequency region. The raw 
audio signal has little power in the range where EEG power is concentrated, implying 
poor correlation. The envelope of that signal has power in the same range as EEG. 
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The modulation spectrum, distinct from the acoustic spectrum, is an important feature 
characteristic of speech and other sounds (Dau et al. 1997; Hermansky 2010; Jepsen et al. 
2008; Lorenzi et al. 2001; Singh and Theunissen 2016; Xiang et al 2013). The envelope may 
be derived from the waveform by applying the Hilbert transform, or merely by half-wave or 
full-wave rectification followed by low-pass filtering.  

 
Waveform envelope calculated using various methods. Spectral properties are roughly 
equivalent in the low-frequency range where EEG is concentrated. 

 The resulting envelope waveform may be submitted to a non-linear transform, typically 
compressive power function (e.g. exponent 2/3) or logarithm. These details usually have a 
minor effect on performance (Biesmans et al 2017).  

Additional schemes have been proposed, for example the half-wave-rectified derivative of the 
envelope signal (Sturm et al 2015). The rationale here is that brain responses tend to be 
triggered by the onset of acoustic events. While attractive, this transform has not proved 
superior to the envelope itself. 

The majority of studies of audio/EEG decoding assume a waveform envelope representation 
(e.g. Powers et al 2012;  

5.2.	Filter-bank	
While the waveform envelope has been successful in early studies, it is a very crude 
representation of the ongoing acoustic signal. Processing within the auditory system begins 
with filtering within the cochlea, and thus a filter-bank representation (for example based on a 
model of cochlear filtering) would seem more promising than the waveform envelope. The 
filter-bank splits the acoustic signal into multiple channels, each of which can be processed 
individually (by demodulation as above), to obtain a set of envelope signals with slow 
variations commensurate with EEG. Envelopes from multiple channels then form a 
multidimensional signal representative of the sound. 

Nonetheless, the small number of demodulated filter channels constitute an impoverished 
representation of the speech signal, although multichannel representations of this sort have 
been shown to support a high level of intelligibility (Shannon et al 1995). Regardless, this 
representation has some hope to better predict cortical responses than the waveform envelope. 

The filterbank representation has been investigated in several decoding studies (Di Liberto 
2015; Biesmans et al 2017; Martin et al 2014; Mesgarani and Chang 2012; Pasley et al 2012), 
for both forward (TRF) and backward (reconstruction models). Reconstruction from invasive 
measurements (ECoG) has met a surprising degree of success (e.g. Mesgarani and Chang 
2012; Pasley et al 2012), but reconstruction from EEG or MEG is less successful. In contrast, 
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forward models benefit from the greater detail of spectrogram vs waveform envelope 
representations ((Di Liberto 2015; Biesmans et al 2017). 

 
Left: cross-correlation coefficient between channels of an auditory spectrogram. The 
filterbank was simulated in the frequency domain (FFT) with channel frequency 
spacing and bandwidths calculated to simulate human peripheral selectivity, and 
temporal resolution calculated to approximate human temporal resolution while 
maintaining uniform alignment and resolution across frequency bands (~20ms) so that 
the spectrogram is separable. Note the large values of correlation between most 
channels. Right: relative power of each individual principal component of the 
spectrogram. 

Filterbank representations are contingent on type and parameters of the filterbank. These 
include the bandwidth and shape of each filter, the density and distribution of centre 
frequencies (CF), and the nature of the demodulation and eventual nonlinear scaling of the 
outputs. Convolution by the filter impulse response entails temporal smoothing that is greater 
for narrow filters. Many filterbanks are logarithmic (e.g. wavelet) or approximately 
logarithmic (e.g. cochlear), with narrower filters at low CFs.  The power of audio signals such 
as speech is often correlated across frequency bands, leading to a high degree of correlation 
between channels, such that the envelope of any band is not too different from the envelope of 
the raw waveform. 

Interestingly, filterbank representations are often summarized by averaging over frequency 
dimension (Ding and Simon 2013), effectively producing a "broadband" envelope similar to 
that discussed earlier. 

5.3.	Cortical	model	
Cochlear filtering is but the first stage of auditory processing. It captures well our sensitivity 
to spectral features, but not the effects of temporal and spectral modulation, that are 
presumably calculated at higher auditory stages such as the cortex. Such higher-order 
processing stages have also been modeled, in particular cortical processing of spectral and 
temporal modulation (Chi et al 2005), and some success has been reported in using them to 
relate to brain responses, in particular invasive recordings (Pasley et al 2012). 

5.4.	Higher-order	signal-processing	models	
Many schemes have been proposed to describe sound (e.g. Alías	2016). To the extent that 
they are relevant to predict meaning or aspects of sound that determine the response of a 
listener, they are all of potential use to predict the listener's brain response. 
The Mel frequency cepstral coefficient (MFCC) is commonly used in Automatic Speech 
Recognition (ASR). The MFCC captures well the overal shape of the spectrum, with 
macroscopic features (e.g. spectral tilt) coded in the lowest coefficients and details (e.g. 
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harmonic structure) in the highest coefficients. MFCCs have been used as an alternative to a 
spectrogram representation (Chakrabarti et al 2013; Chan et al 2014). 

Several studies have postulated an intimate connection between the rhythmic structure of 
speech (as captured by modulation spectral representations) and cortical rhythms (Ghitza 
2011; Zoefel and Van Rullen 2016; Peelle et al 2012; Giraud and Poppel 2012), although the 
well-groundedness of this hypothesis has been questioned (Cummins 2012; Obleser 2012). 
Rhythmic structure on the (slow) scale of syllables or articulatory gestures can be 
characterized directly from temporal variation of acoustic features (envelope, spectrogram) or 
quantified more abstractly by higher-order modulation features, such as offered by certain 
auditory models (e.g. Dau 1997; Jepsen et al 2008). Modulation features are captured by the 
cortical model of Chi et al (2005) that has been applied to EEG/audio decoding (Pasley et al 
2012). 

Audio signals have structure on multiple scales, ranging from the short scale captured by 
spectral representations to the scales characteristic of textures, or speech or musical structure 
that may be characterized by methods such as the Scattering Transform (Andèn et al 2015). 
These models are of potential interest to the extent that cortical events may be triggered by 
events within a complex hierarchical structure, in addition to the low-level patterns that have 
been characterized in past studies.  The potential of such models in the context of the 
COCOHA application is that the richer representation that they offer they may lead to better 
discrimination between attended and unattended streams. 

5.5.	Symbolic	representations	
In addition to low-level acoustic features characteristic of the waveform, speech may be 
indexed with higher-level labels of phonemes (or phonemic traits), words, and so-on.  Several 
studies have shown that EEG responses can be related to these labels, leading to better 
decoding performance than with acoustic features only (Di Liberto et al 2015;	Di	Liberto	et	al	
2017;	 Tankus et al 2012; Mesgarani et al 2015; Khalighinejad	et	al	2017). This result is 
drawn from studies where speech data with phonemic labels was available, but the same 
information could in principle be extracted from the speech using an automatic speech 
recognition system. 

5.6.	Multimodal	representations	
Most	speech	decoding	studies	assume	that	only	the	audio	signal	is	available,	but	in	
practial	scenarios	it	is	not	unreasonable	to	assume	that	visual	cues	are	available,	at	least	
part	of	the	time.	They	may	even	be	crucially	needed	in	noisy	situations,	if	the	listener	is	
impaired,	or	if	the	SNR	of	the	desired	source	is	initially	too	low	to	allow	audio-based	
decoding	(the	so-called	"bootstrap	problem"	of	a	decoding-based	control	system).		
Cortical	responses	to	speech	are	indeed	enhanced	in	the	presence	of	visual	cues	(Zion	
Golumbic	et	al	2013;	Crosse	et	al	2015;	Crosse	et	al	2016;	Peelle	et	al	2015).	In	order	to	
benefit	from	these	cues,	an	actual	system	would	need	to	analyze	the	scene	using	
machine	vision	techniques	for	cues	to	visible	events	(e.g.		speaker	articulator	
movements).			

A	useful	feature	of	such	higher-order,	symbolic	and	multimodal	representations	is	that	
they	may	involve	cortical	sources	(most	likely	from	secondary	areas)	distinct	from	low	
level	features	(most	likely	from	primary	areas).	Distinct	sources	are	likely	to	have	
distinct	spatial	signatures	that	can	be	used	to	derive	distinct	discriminative	dimensions	
for	decoding	and	control.	
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5.7.	Deep	Neural	Networks	
The	most	remarkable	recent	trend	in	information	processing	is	the	development	of	deep	
learning	techniques.		These	have	been	applied	to	EEG	signal	analysis	(e.g.	Stober	et	al	
2016;	Suckling	et	al	2015;	Kwak	et	al	2017;	Zheng	&	Lu	2015).	DNNs	do	not	yet	seem	to	
have	been	applied	to	the	task	of	extracting	an	EEG-predictive	representation	from	audio	
streams.	

6.	Combining	representations	
Different	representations	may	tap	different	levels	of	processing.	To	the	extent	that	they	
come	from	spatially	distinct	sources	(e.g.	from	different	levels	of	the	processing	
hiearchy)	they	provide	distinct	and	complementary	discriminatory	dimensions.	A	
general	tool	for	combining	distinct	representations,	extensively	used	within	the	COCOHA	
project,	is	canonical	correlation	analysis	(Hotelling	1936).	

	

Summary	
The	COCOHA	project	aims	to	develop	a	hearing	aid	with	sophisticated	acoustic	
processing	under	cognitive	control.	One	strategy	for	control	calls	for	the	EEG	signal	from	
the	user	to	be	correlated	with	each	of	the	acoustic	streams	that	can	be	isolated	by	the	
acoustic	processing	module,	so	as	to	select	one	for	amplification.	For	this	to	be	
successful	the	audio	must	be	preprocessed	so	as	to	isolate	features	most	predictive	of	
the	EEG	evoked	by	an	attended	stream.	A	wide	range	of	features	is	available,	from	low-
level	envelope	or	spectrotemporal	features,	to	high-level	structural	or	symbolic	
representations.	Low-level	features	are	implemented	in	the	COCOHA	toolbox,	others	are	
under	investigation.		
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